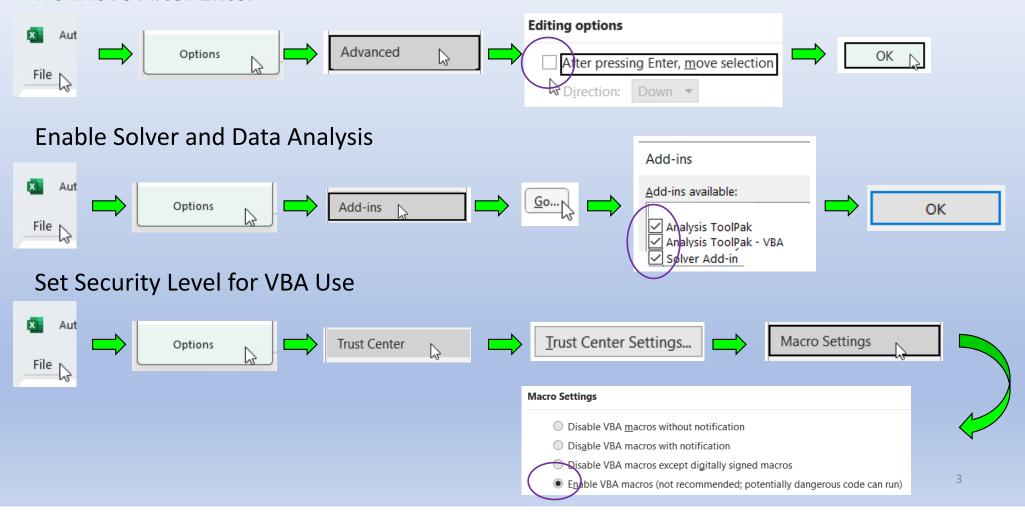
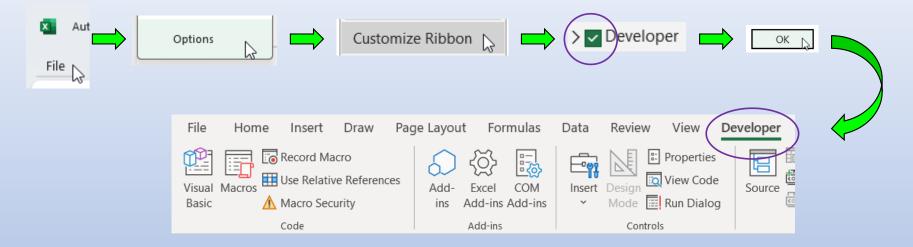

Excel Bootcamps 1. 2. 3 and 4

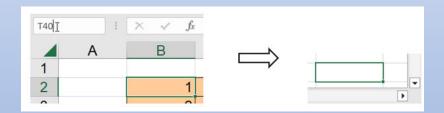

- 1: Getting up to speed with Excel
- 2: Introducing VBA
- 3: Learning to use Excel to solve typical problem scenarios
- 4: Detailed modeling of packed-bed and plug-flow reactors

Bootcamp 1 Outline	<u>Slide Number</u>
 Layout of the Excel main window 	2
 Preferred settings 	3
 Efficient spreadsheet manipulations 	5
 Formulas, Cell Addresses, and Range Names 	11
 Relational Operators and Logical Functions 	23
 Creating Simple Plots 	24
 Creating Plots with Multiple Series 	32
 Plots with Logarithmic Scales 	44
 Creating Plots of Analytical Functions 	46
Histogram Bar Charts	49
 Contour and Surface Plots 	53


Preferred Settings

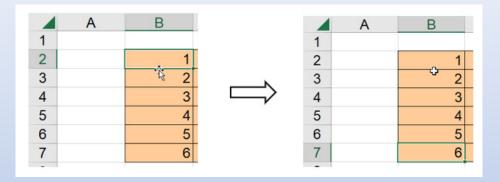
No Move After Enter

Preferred Settings


Enable the Developer Tab on the Ribbon

Moving the ActiveCell

Click on the new cell or use the $\downarrow \rightarrow$ keys

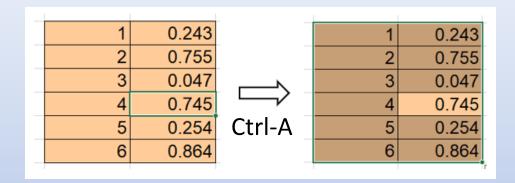


Enter the cell address in the Name Box (can also use F5 GoTo)

SelectionPractice.xlsx

	Α	В	С	D	E
1					
2		1	0.243		
3		2	0.755		
4		3	0.047		
5		4	0.745		
6		5	0.254		
7		6	0.864		
8					
9					
10		39.93	39.71	40.06	40.29
11		40.28	40.40	39.50	39.95
12		40.25	39.75	39.84	39.61
12		30 5 8	30 7 ደ	30 83	20 51

Jumps within filled cell ranges


Double-click boundary of the ActiveCell or Ctrl-↓

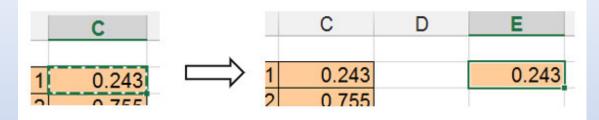
Selections within filled cell ranges

Adjoin the Shift key to the above

Selecting blocks of cells

or Ctrl-*

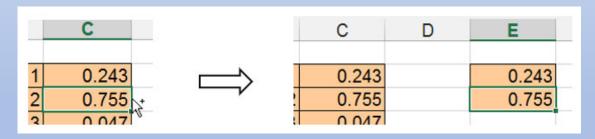
1	0.243
2	0.755
3	0.733
3	
4	0.745
5	0.254
6	0.864


Moves the ActiveCell to the origin

Selecting discontiguous blocks of cells

153	40.24	40.43	39.69	<i>ა</i> ყ.გე
754	40.35	39.99	39.62	39.94
755	40.13	40.26	39.74	39.97
756	40.11	39.92	40.15	39.82
757	40.26	39.96	40.02	39.71
758	40.04	40.49	40.36	40.41
759	39.75	40.09	39.88	40.00

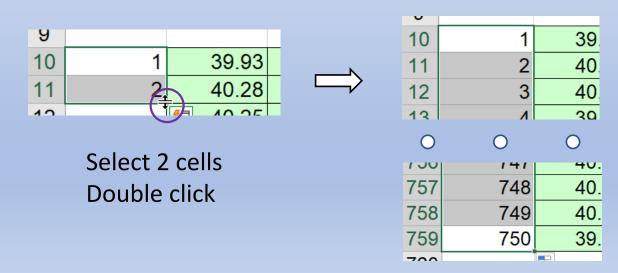
Select B10, Ctrl-Shift-↓
Tab, Back-Tab, Ctrl-click on D10
Ctrl-Shift-↓


Copying cells

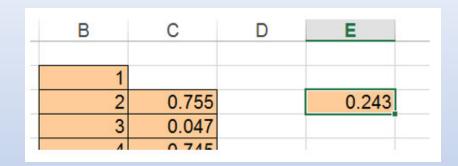
Ctrl-C Select destination cell Enter

Use Paste (Ctrl-V) for multiple copies

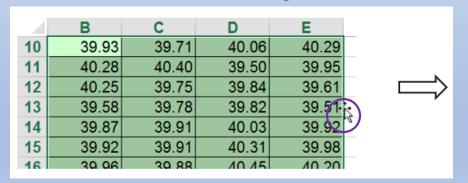
Drag copy



Hold down Ctrl
Drag to new location
Release Ctrl


Copying cells using the Fill Handle

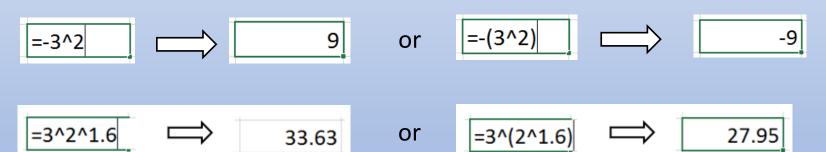
Extending a pattern adjacent to a filled column using the Fill Handle



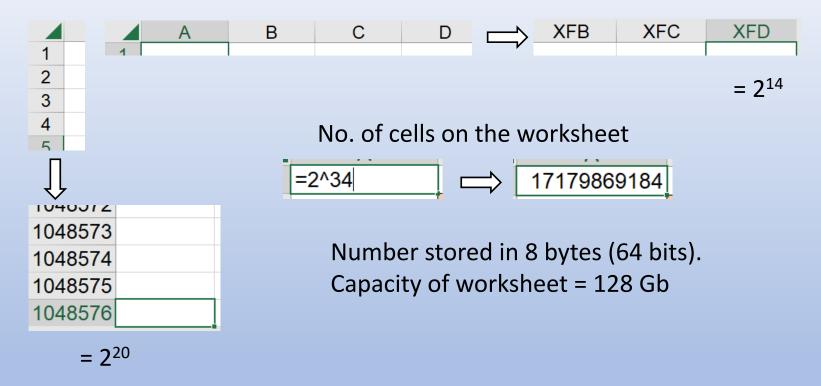
Moving cells

Ctrl-X, Select destination, Enter or Drag cell with mouse

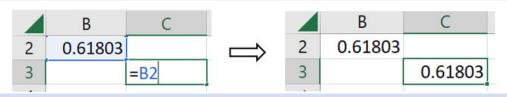
Drag block of cells one column to the right

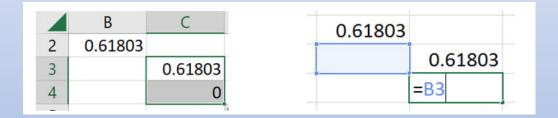

	В	С	D	Е	F
10					
11		39.93	39.71	40.06	40.29
12		40.28	40.40	39.50	39.95
13		40.25	39.75	39.84	39.61
14		39.58	39.78	39.82	39.51
15		39.87	39.91	40.03	39.92
16		39.92	39.91	40.31	39.98

Calculator formulas


- evaluate any functions, like SQRT above
- evaluate parentheses groupings
- negation or unary minus (–) (this is not subtraction)
- exponentiation (^) left to right
- multiplication (*) and division (/) left to right
- addition (+) and subtraction (-) left to right

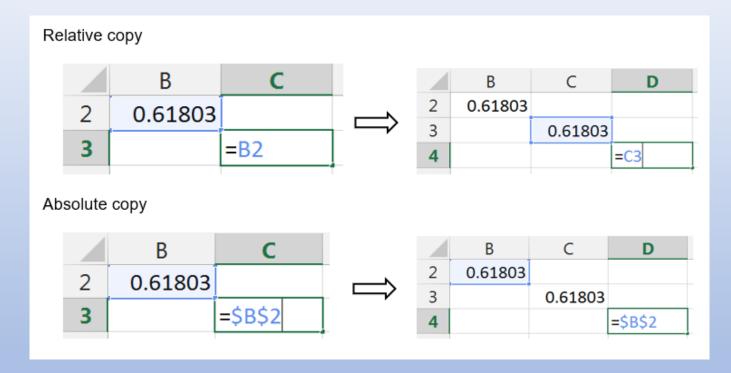
Calculator formulas


Watch out for these


Cell Addresses

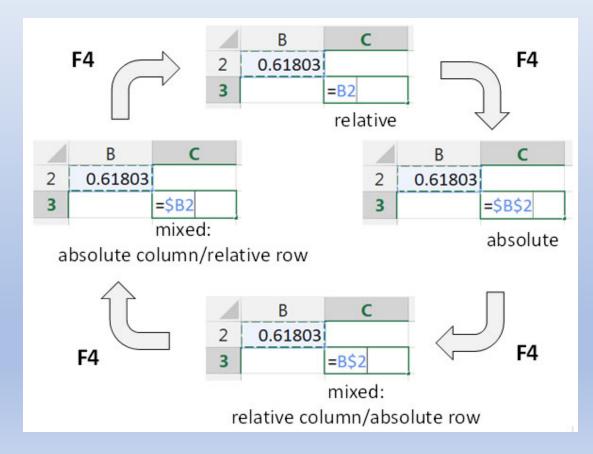
Cell Addresses

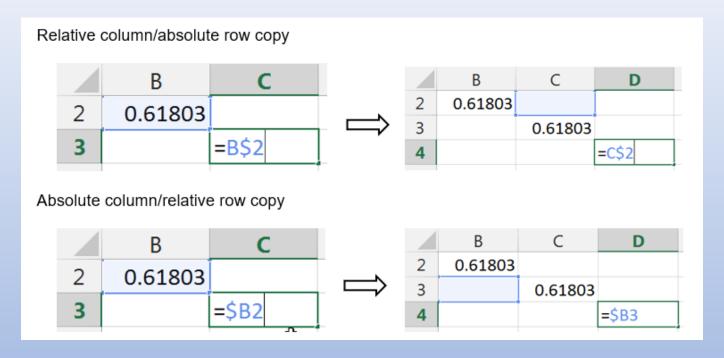
Pointer formula



Drag-copy the formula down Relative reference moves with copy

Drag-move the formula down Cell reference is retained


Relative and Absolute Cell Addresses


Copy from B2 to C3

Relative, Mixed, and Absolute Cell Addresses

Using the F4 Key

Relative, Mixed, and Absolute Cell Addresses

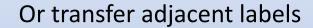
Mixed Cell Addresses Example

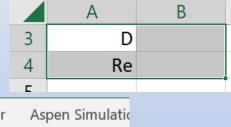
	Α	В	С	D	Е	F	G	Н	1
1					Relat	tive Rough	ness		
2			0.0001	0.0005	0.001	0.005	0.01	0.02	0.05
3	r.	4000							
4	nbe	10000							
5	Number	20000							
6		50000							
7	nole	100000							
8	Reynolds	200000							
9	Œ	500000							
10		1000000							

	Α	В	С	D	Е	F	G	Н	1
1					Rela	tive Rough	ness		
2			0.0001	0.0005	0.001	0.005	0.01	0.02	0.05
3	er	4000	0.0405	0.0408	0.0413	0.0451	0.0497	0.0580	0.0789
4		10000	0.0310	0.0316	0.0323	0.0378	0.0436	0.0532	0.0754
5	Numb	20000	0.0259	0.0267	0.0278	0.0347	0.0413	0.0514	0.0742
6		50000	0.0210	0.0224	0.0239	0.0326	0.0397	0.0504	0.0735
7	Joh	100000	0.0183	0.0202	0.0222	0.0318	0.0392	0.0500	0.0732
8	Reynolds	200000	0.0163	0.0189	0.0212	0.0314	0.0389	0.0498	0.0731
9	4	500000	0.0144	0.0178	0.0205	0.0312	0.0388	0.0497	0.0731
10		1000000	0.0135	0.0175	0.0203	0.0311	0.0387	0.0497	0.0730

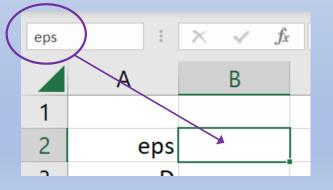
f –		1	
J_M –	$\overline{\left\{-1.8 \cdot log_{10}\right }$	$\left[\left(\frac{\varepsilon/D}{3.7}\right)^{1.1}\right]$	$+\frac{6.9}{Re}$

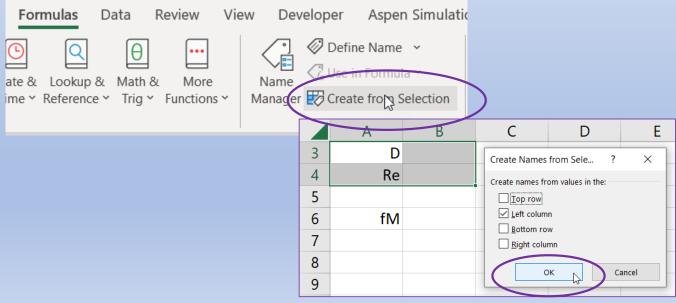
Haaland equation for friction factor in pipe flow


	Α	В	С	D	Е	F	G
1			Relative Roughness				
2			0.0001	0.0005	0.001	0.005	(
3	<u>_</u>	4000	=1/(-1.8*L	=1/(-1.8*LOG10((C\$2/3.7)^1.1+6.9/\$B3))^2			
4	obe .	10000					
L-		20000					


HaalandMoodyStarter.xlsx

Creating Cell Names


	Α	В
1		
2	eps	
3	D	
4 5	Re	
5		
6	fM	


- names cannot be cell addresses,
 TMP1 cannot be a name
- R and C cannot be names
- R and C followed by any numeral cannot be names

Enter name in the Name Box

Using Cell Names in Formulas

	Α	В	
2	eps	4.50E-05	m
3	D	0.0525	m
4	Re	10000	

Cn a	4 // 4 0 //	0040//	/D /O 7\A4 4		_
TIVI	=1/(-1.8^L	OG10((eps/	/D/3./)^1.1	L+6.9/Re))^:	2
	, , ,	* * * * * * * * * * * * * * * * * * * *	, ,	, ,,	

Z	Α	В	
2	eps	4.50E-05	m
3	D	0.0525	m
4	Re	10000	
5			
6	fM	0.0323	
7			

Using Range Names in Formulas

Pdata : X									BlockData.xlsx				
	Α	В	С	D		E	F						
1													
2		17.25	11.38	22.33		15 /19	17 12						
3		14.30	18.33	14.07		17.25	1	1.38	22.33	15.49	17.13		
4		16.61	15.40	16.47		14.30	1	8.33	14.07	11.35	16.67		
5		13.57	14.27	14.21		16.61	1	5.40	16.47	17.50	17.92		
6		12.88	15.42	15.85		13.57	1	4.27	14.21	6.24	14.95		
7		17.48	15.13	16.22		12.88	1	5.42	15.85	12.72	8.37		
8		9.91	17.13	8.54		17.48	1	5.13	16.22	12.08	19.06		
9		13.69	17.08	14.78		9.91	1	7.13	8.54	16.57	14.56		
10		12.94	15.61	17.26		13.69	1	7.08	14.78	20.43	11.46		
11		13.81	15.10	18.37		12.94	1	5.61	17.26	12.79	15.93		
						13.81	1	5.10	18.37	9.62	13.37		
				14.79	=AVERAGI	E(Pdat	a)						

The **IF** Function and Logical Expressions

Syntax: =IF(logical expression,true option,false option)

Example: Square a value and retain the sign in the result

	В	С	D				В	С
2	-3	=IF(B2<0,-	2	-3	-9			
	h	3	3	9				
Logic	cal expres	4	0	0				

Relational Operators and Logical Functions

Relational Operators

= equal to

<> not equal to

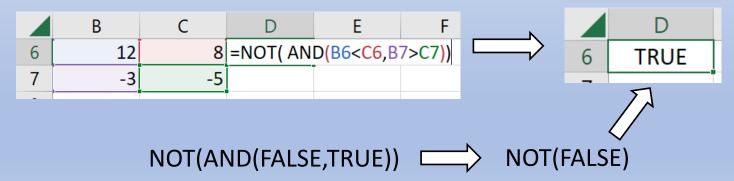
> greater than

< less than

>= greater than or equal to

<= less than or equal to</pre>

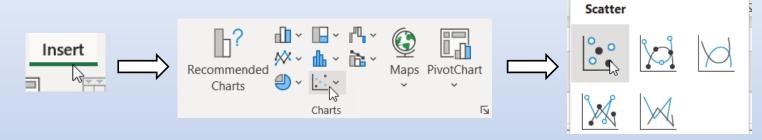
Logical Functions

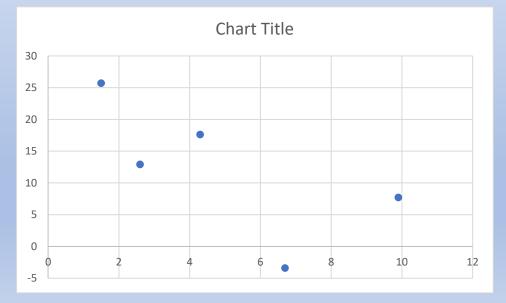

NOT logical negation

AND logical and

OR logical or

XOR exclusive or

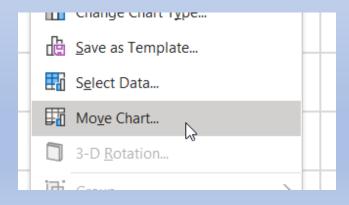

Example logical expression

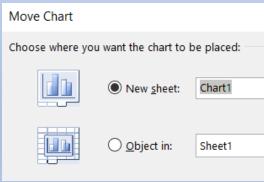


XY Charts

	В	С	
2	X	У	
3	1.5	25.7	
4	2.6	12.9	
5	4.3	17.6	
6	6.7	-3.4	
7	9.9	7.7	
_			

Create a scatter plot of y versus x



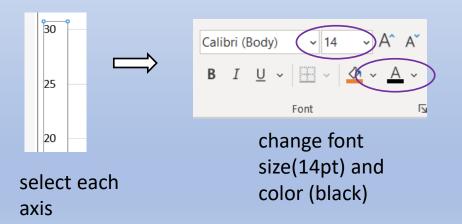

Customizing the scatter plot

Typical steps:

- Move the plot to its own chart sheet
- Align and format the axes
- Adjust markers and lines
- Add axis titles and chart title

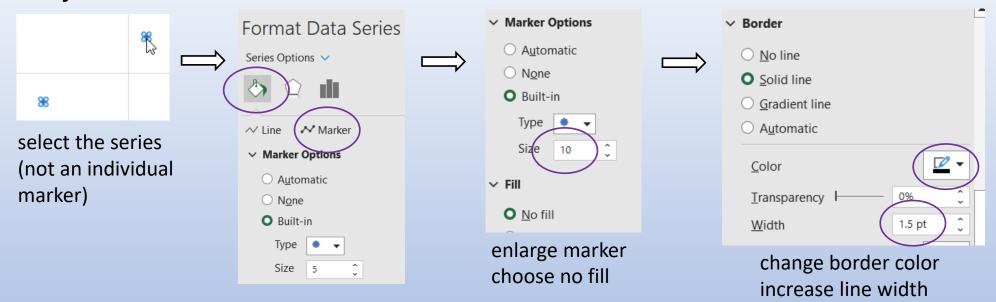
Move the plot to its own chart sheet

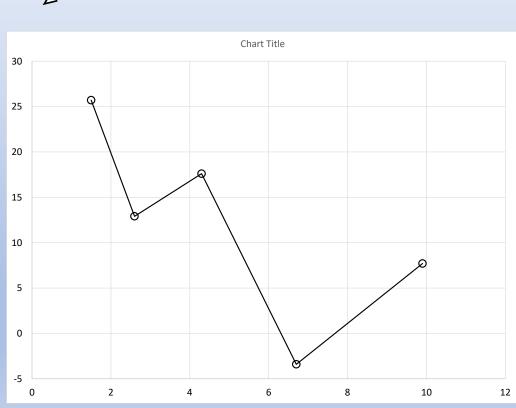



click OK

Formatting is best with the chart on its own sheet. Reasons to keep the chart on the worksheet include when multiple charts need to be visible and when it is advantageous to see plot responses to worksheet changes.

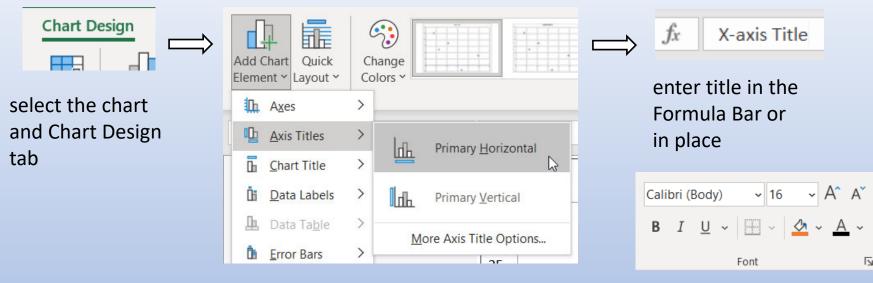
right-click the chart


Align and format the axes


Note: Can change font style, if desired.

Adjust markers and lines

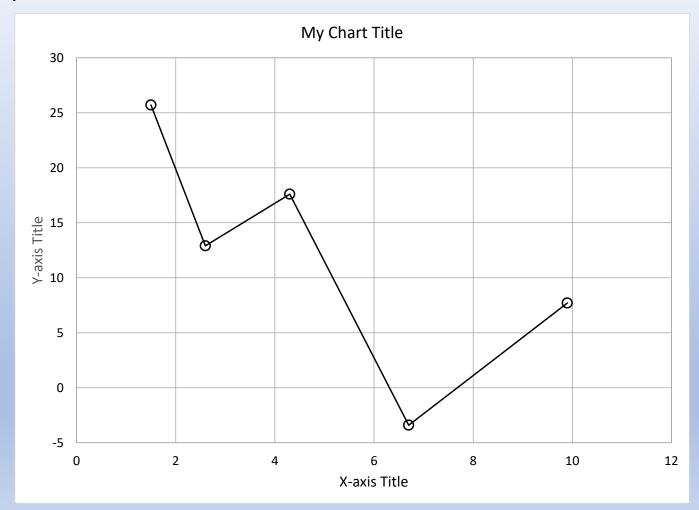
Adjust markers and lines – possibly add interconnecting lines


Adjust markers and lines – increase intensity of gridlines

select solid line and adjust intensity to suit

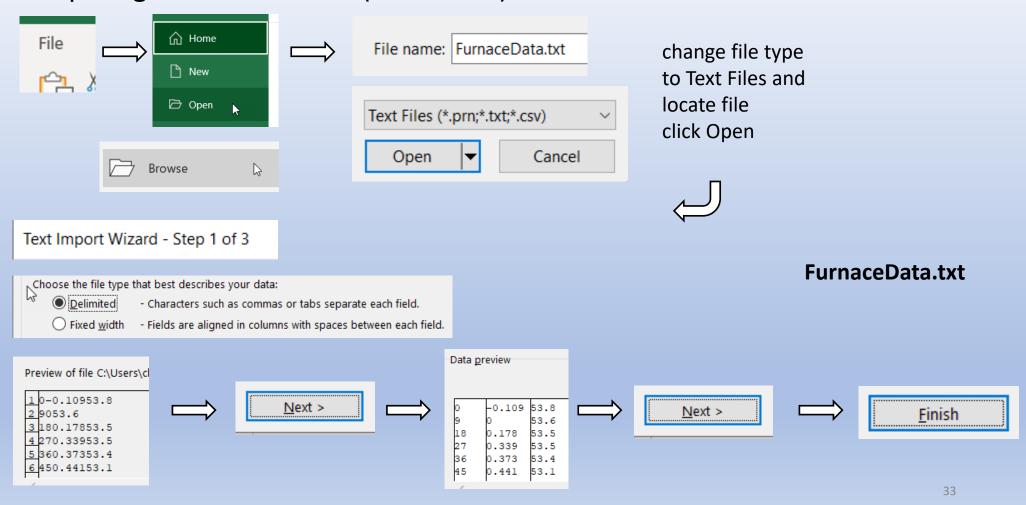
Format the vertical gridlines similarly, the plot outline, and the axes borders.

Add axis titles and chart title


Carry out similar entry and formatting of Primary Vertical Axis Title and Chart Title

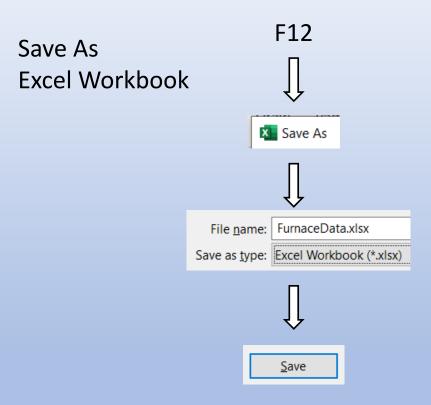
Note: Can change font style, if desired.

adjust font size and color

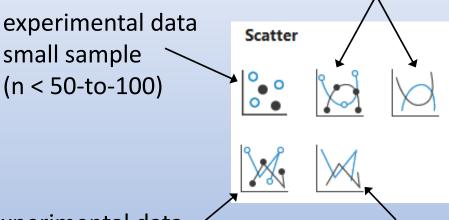

Example Formatted Plot

Possible features:

- Acquiring data from a text (.txt or .csv) file
- Distinguishing markers and/or line styles
- Legend to identify series
- Lines only for large data series or analytical functions

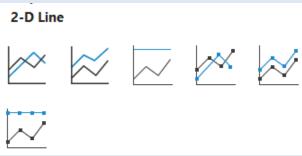

Acquiring data from a text (.txt or .csv) file

Acquiring data from a text (.txt or .csv) file

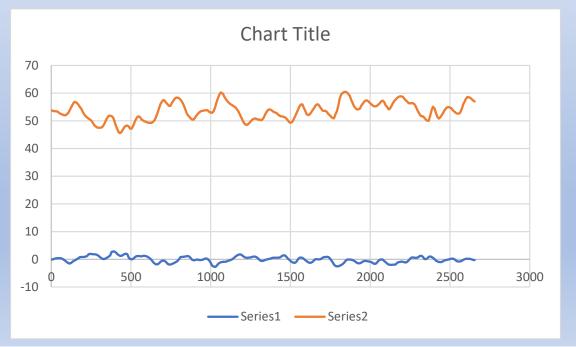

	Α	В	С
1	0	-0.109	53.8
2	9	0	53.6
3	18	0.178	53.5
4	27	0.339	53.5
5	36	0.373	53.4
6	15	0.441	52 1
	0	0	0
	Α	В	С
292	2619	0.195	58.5
293	2628	0.131	58.3
294	2637	0.017	57.8
295	2646	-0.182	57.3
296	2655	-0.262	57

296 data entries time, y1, and y2

Different X-Y Scatter Plot Styles

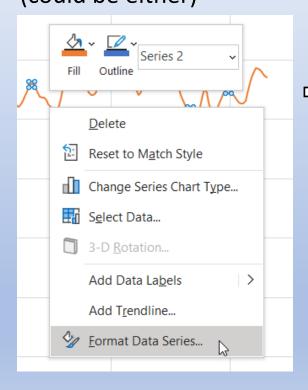

artificial smoothing recommend against

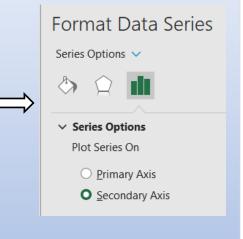
experimental data / small sample (n < 50-to-100) interconnecting lines for pattern recognition


experimental data large sample (n < 50-to-100) markers would clutter interconnecting lines or analytical functions

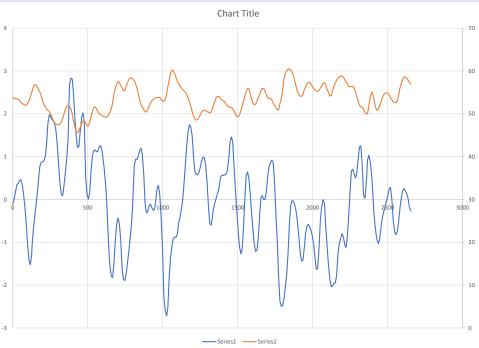
recommend against using Line plot which are intended for categorical x-axis

X-Y Plot – Straight Lines, No Markers

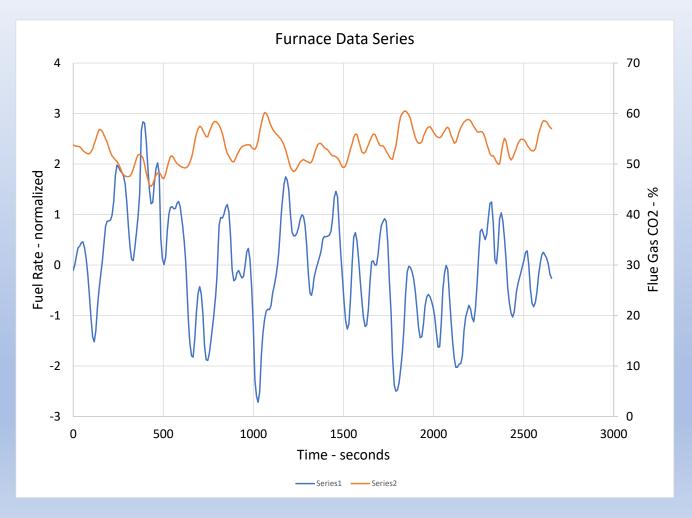

	Δ	В	C					D	6 =			Maps PivotChart
		D					II-7					
1	0	-0.109	53.8	<u> </u>	Insert	\longrightarrow	Ш.	₩ ~ i ii ~		\Longrightarrow	Scatter	ž
2	9	0	53.6				Recommended Charts		Maps PivotChart		000	12 12
3	18	0.178	53.5				Cilaits				0	M M
4	27	0.339	53.5					Charts	Ŋ			
5	36	0.373	53.4								- <u> </u>	
_	45	0.444	50.4								Н	

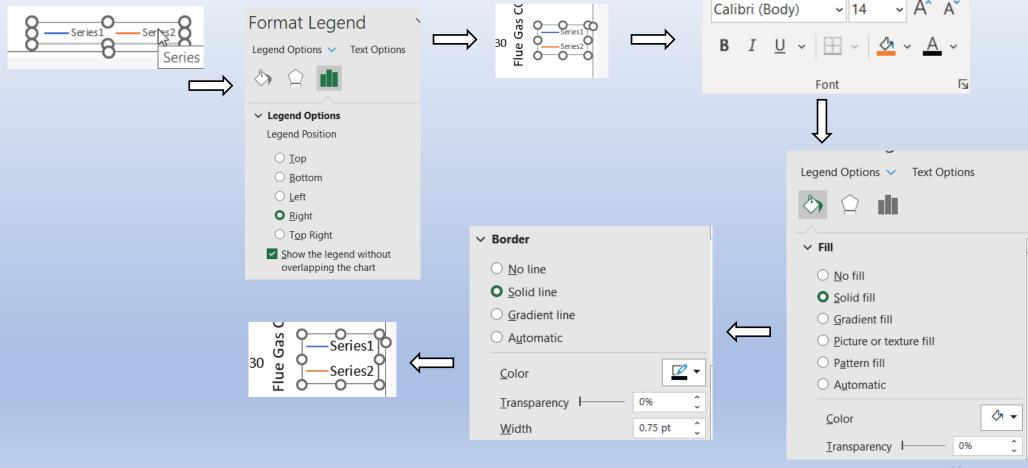


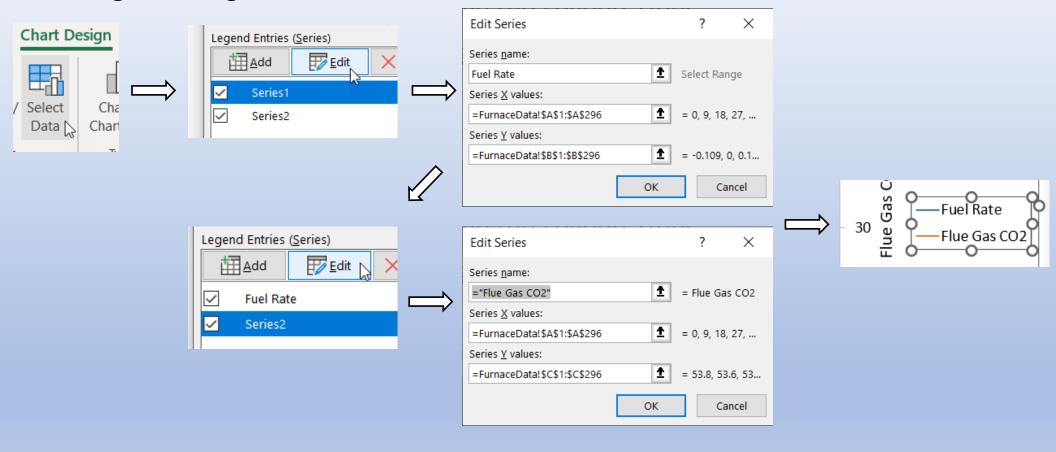
36


X-Y Plot – Straight Lines, No Markers

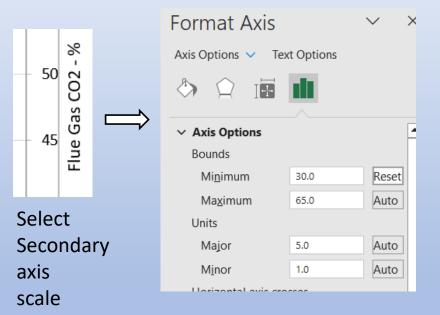
select one series, here y2 (could be either)

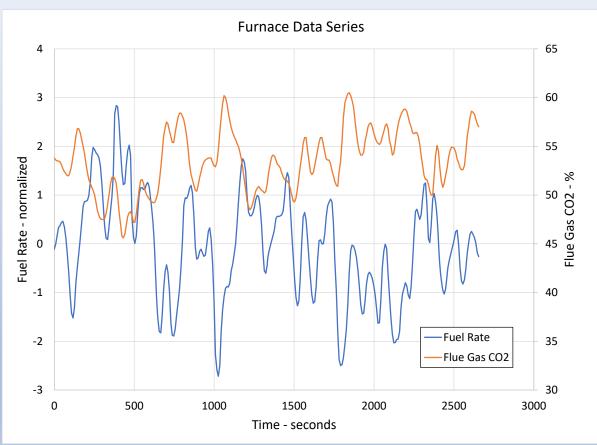


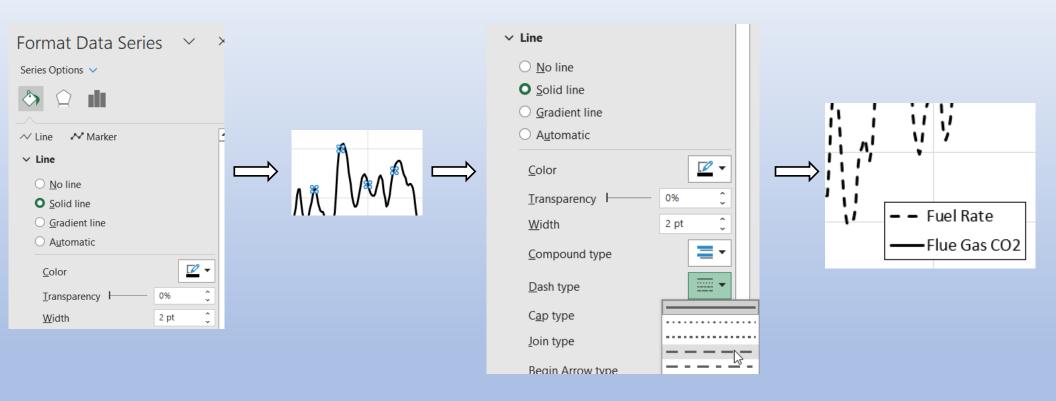

move to Secondary (right) axis


Format Axes and Add Titles

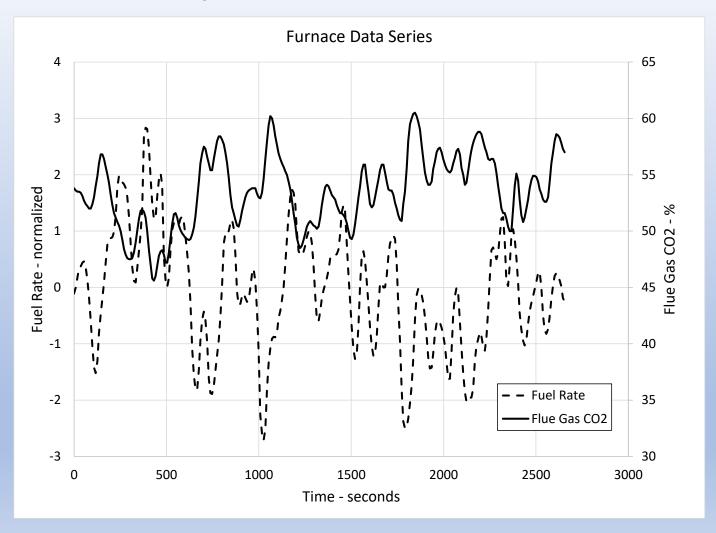
Move and Format Legend




Change the Legend Titles

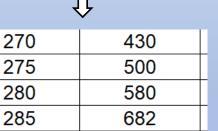

Change Right Vertical Axis Scale

Move Legend Into the Plot Stretch the Plot

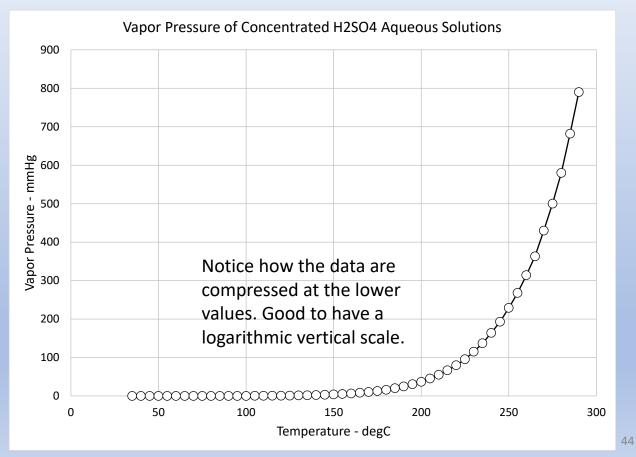


Change Line Styles for B&W Presentation

Final Plot

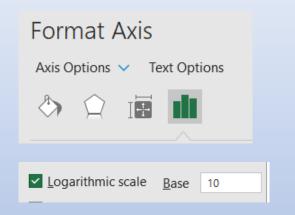


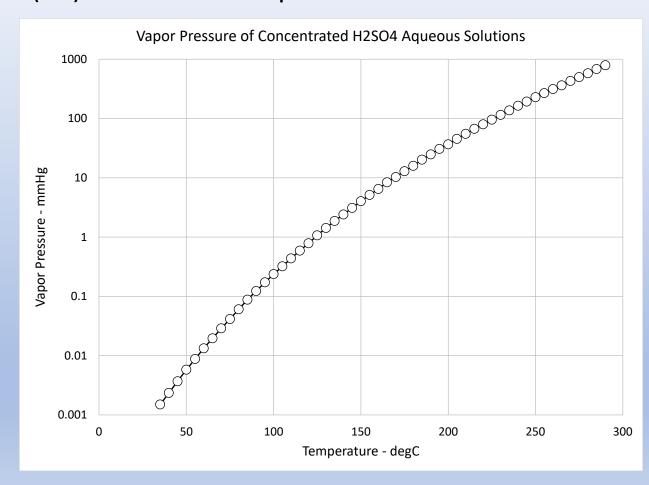
Plots with Logarithmic Scale(s)


H2SO4VaporPressureStarter.xlsx

Vapor Pressure of 95%(wt) Sulfuric Acid Aqueous Solution

	Α	В	
	Temperature	Vapor	
	(degC)	Pressure	
2		(torr)	
3	35	0.0015	
4	40	0.00235	
5	45	0.0037	
6	50	0.0058	
7	55	በ በበጸ77	

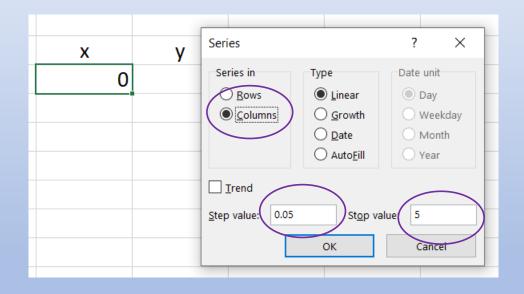

Create X-Y plot with markers and lines

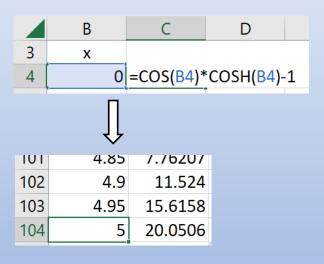


Plots with Logarithmic Scale(s)

Vapor Pressure of 95%(wt) Sulfuric Acid Aqueous Solution

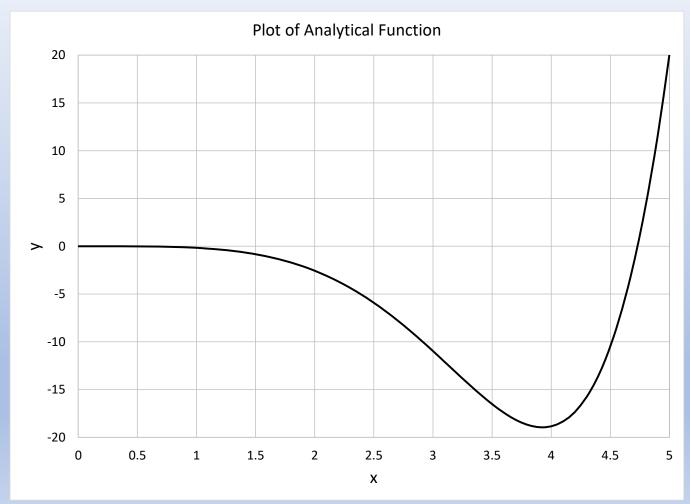
Logarithmic vertical scale

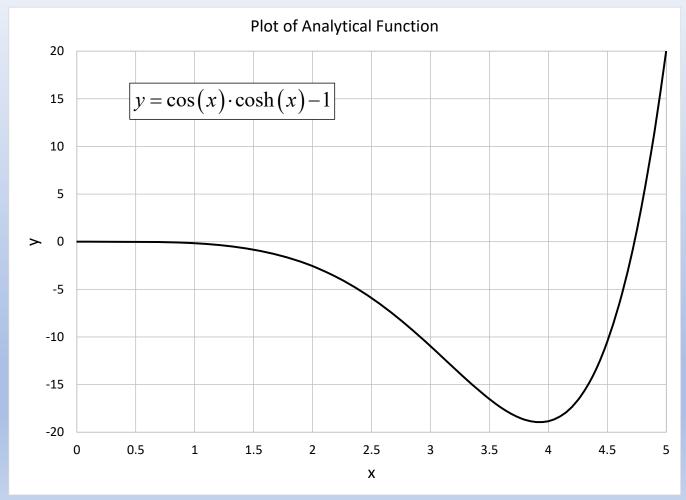




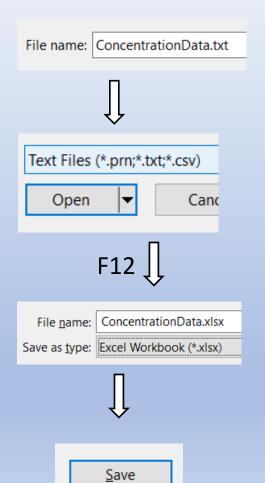
Creating Plots of Analytical Functions

Create table of function values


$$y = \cos(x) \cdot \cosh(x) - 1$$
 $0 \le x \le 5$


Creating Plots of Analytical Functions

Create Formatted Plot of y vs. x


Creating Plots of Analytical Functions

Insert Equation Object on Plot

ConcentrationData.txt

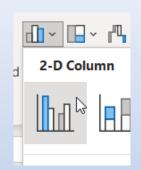
Create histogram data with the FREQUENCY function

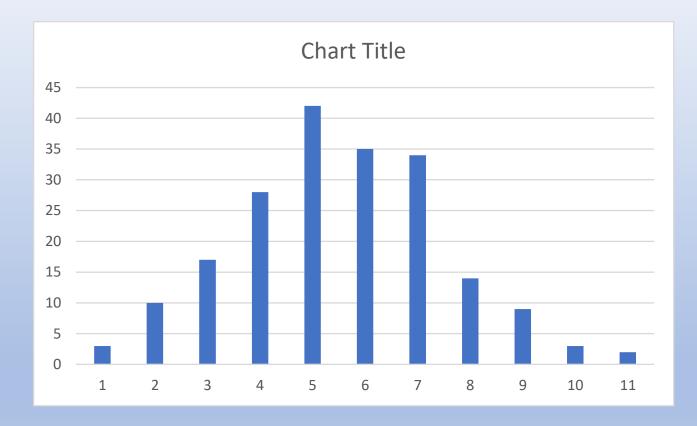
	Α
1	17
2	16.6
3	16.3
4	16.1
5	17.1
6	16 9
193	17.6
194	17.8
195 17.7	
196	17.2
150	
197	17.4

name the range of data Conc

n	197
max	16.1
min	18.2

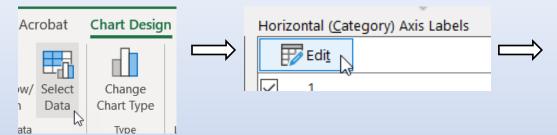
array formula
=FREQUENCY(Conc,Bins)

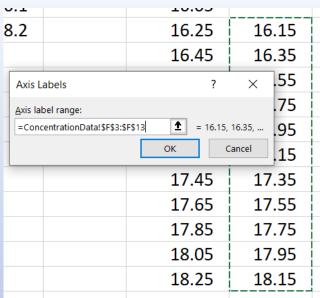

Bin		Bin
Boundaries	Frequencies	Centers
16.05	0	
16.25	3	16.15
16.45	10	16.35
16.65	17	16.55
16.85	28	16.75
17.05	42	16.95
17.25	35	17.15
17.45	34	17.35
17.65	14	17.55
17.85	9	17.75
18.05	3	17.95
18.25	(2)	18.15

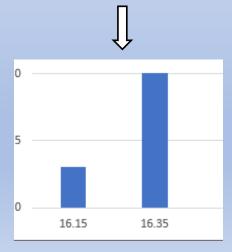

create a bar chart of frequencies versus bin centers

2 data >= 18.05 < 18.25

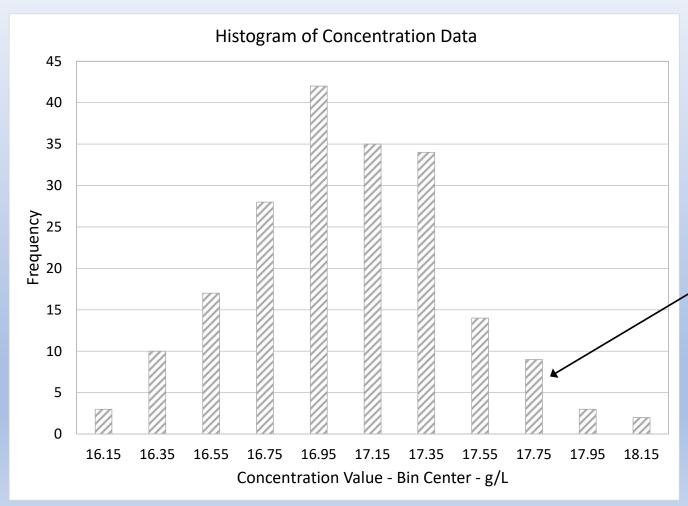
Create bar chart based on histogram data


	Frequencies	
	0	
	3	
	10	
	17	
	28	
	42	
	35	
	34	
	14	
	9	
	3	
	2	
L		4





move the chart to its own sheet

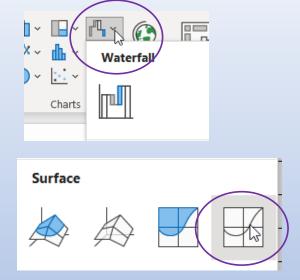

Change x-axis labels to bin centers

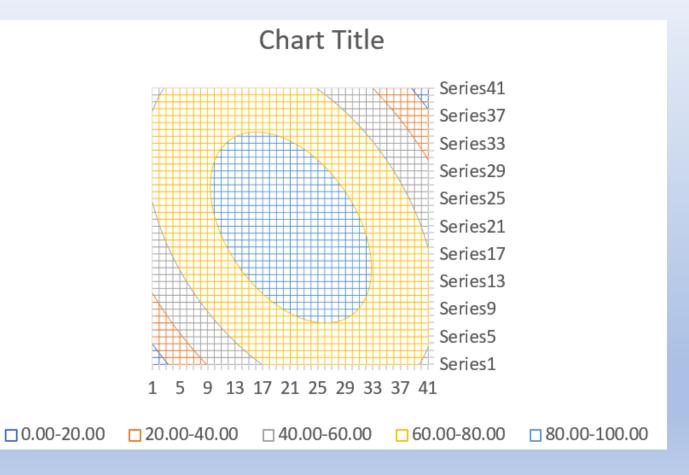
Complete formatting of the chart

change bar fill to a dark gray pattern

AnalyticalFunctionStarter.xlsx

Illustrate with an analytical function

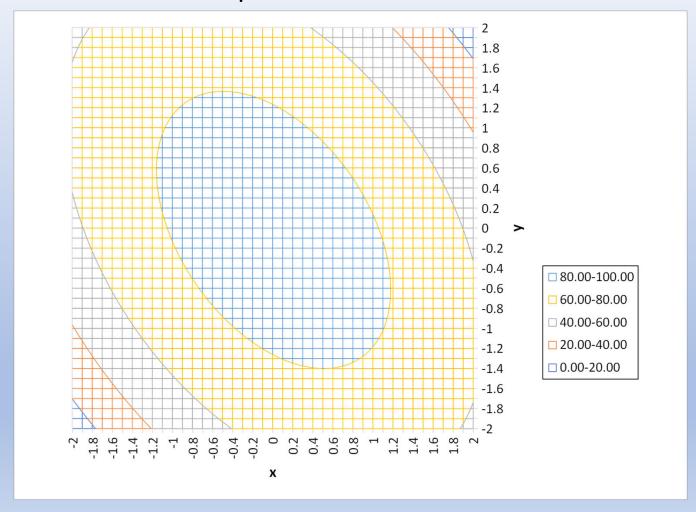

$$\begin{vmatrix} z = f(x, y) = 89 + 0.04x - 0.16y - 8.09x^2 - 5.78y^2 - 5.89xy \\ -2 \le x, y \le 2 \end{vmatrix}$$


Set up a 2-way data

table

	Α	В	С	D	Е		F			
1										
2	Х	0.5		87.105	-2		-1.9			
3	У	-0.5		-2	10.20		14.54			
4	Z	87.105		-1.9	13.62		17.89			
5				-1.8	16.92		01 14 A D	40	A D	۸۲
6				-1.7	20.10	4	AP	AQ	AR	AS
7				-1.6	23.17	38	37.4	2 33.71	29.84	25.81
8				-1.5	26.13	39	34.6	1 30.84	26.91	22.82
						40	31.69	9 27.86	23.87	19.72
						41	28.6	5 24.76	20.71	16.50
						42	25.49	9 21.55	17.44	13.17
						43	22.2	2 18.22	14.05	9.72

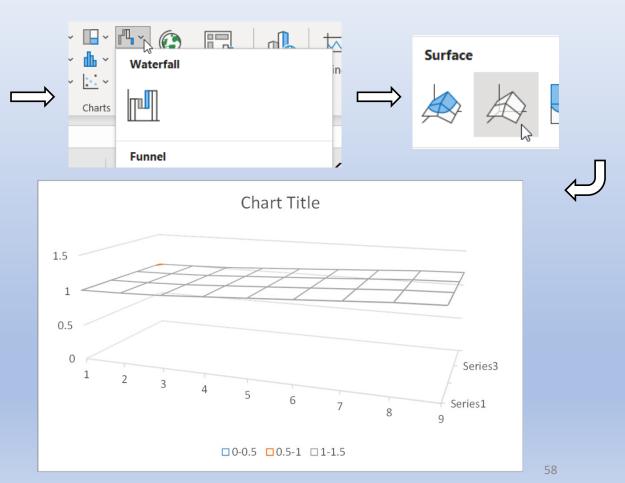
Select interior of the table and create a contour plot


Adjust contour plot settings

Repeat for all series (tedious!)

Add axes titles
Format axes ticks
Move and format legend

Final version of contour plot

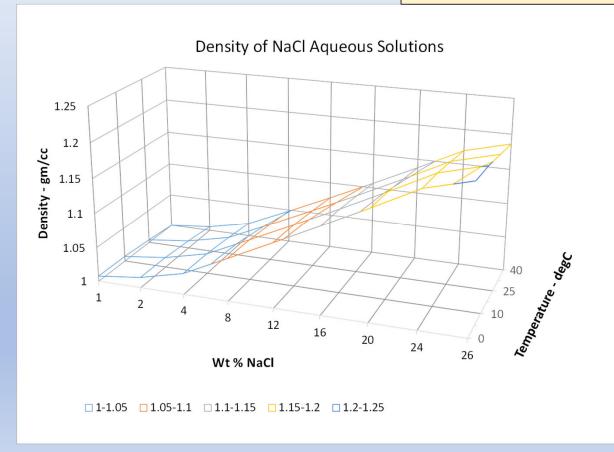

Surface mesh plot of experimental data

NaClDensityStarter.xlsx

	Α	В	С	D	Е	F		
1	Density of	NaCl	Aqueous S	Aqueous Solutions				
2			Temperature					
3			0 °C	10 °C	25 °C	40 °C		
4		1	1.00747	1.00707	1.00409	0.99908		
5		2	1.01509	1.01442	1.01112	1.00593		
6		4	1.03038	1.02920	1.02530	1.01977		
7	Wt %	8	1.06121	1.05907	1.05412	1.04798		
8	NaCl	12	1.09244	1.08946	1.08365	1.07699		
9	INACI	16	1.12419	1.12056	1.11401	1.10688		
10		20	1.15663	1.15254	1.14533	1.13774		
11		24	1.18999	1.18557	1.17776	1.16971		
12		26	1.20709	1.20254	1.19443	1.18614		

Surface mesh plot of experimental data

	0 °C	10 °C	25 °C	40 °C
1	1.00747	1.00707	1.00409	0.99908
2	1.01509	1.01442	1.01112	1.00593
4	1.03038	1.02920	1.02530	1.01977
8	1.06121	1.05907	1.05412	1.04798
12	1.09244	1.08946	1.08365	1.07699
16	1.12419	1.12056	1.11401	1.10688
20	1.15663	1.15254	1.14533	1.13774
24	1.18999	1.18557	1.17776	1.16971
26	1.20709	1.20254	1.19443	1.18614



Surface mesh plot of experimental data

Move plot to chart sheet and format

Note: Excel's contour and surface plots are limiting. A better choice is to use the Excel link to Matlab and create plots there.

Note: Since this is a categorical plot, both grids aren't spaced correctly.

Reference:

Spreadsheet Problem Solving and Programming for Engineers and Scientists,

David E. Clough and Steven C. Chapra, CRC Press - Taylor & Francis Group, 2024.

What's next?

Excel Bootcamps 1, 2, 3 and 4

- ✓ 1: Getting up to speed with Excel
- 2: Introducing VBA
- 3: Learning to use Excel to solve typical problem scenarios
- 4: Detailed modeling of packed-bed and plug-flow reactors

"Prof. Clough, may I be excused? My brain is full."