Excel Bootcamps 1, 2, 3 and 4

- ✓ 1: Getting up to speed with Excel
- ✓ 2: Introducing VBA
- 3: Learning to use Excel to solve typical problem scenarios
- 4: Detailed modeling of packed-bed and plug-flow reactors

Bootcamp 3 Outline

•	Solving Single Algebraic Equations	2
•	Solving Sets of Linear Algebraic Equations	10
•	Solving Sets of Nonlinear Algebraic Equations	16
•	Ordinary Differential Equation Models	25
•	Solving Multiple Differential Equations	30
•	Optimization	48
•	Curve-Fitting	54

Excel Tools	Numerical Methods
Goal Seek	 Bracketing methods Bisection False position
Solver	 False position Open methods Newton-Raphson Modified secant Hybrid
	 Brent's method Circular scenario Substitution Wegstein method

For details on numerical methods, see Chapra and Clough, Applied Numerical Methods with Python for Engineers and Scientists, McGraw-Hill, 2022, or Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, 5th Edition, McGraw-Hill, 2023.

= 0

(x)

Water-gas shift equilibrium

 $CO + H_2O \Leftrightarrow H_2 + CO_2$

$$f(x) = \frac{\left[Feed_{H_2} + x\right] \cdot \left[Feed_{CO_2} + x\right]}{\left[Feed_{H_2O} - x\right] \cdot \left[Feed_{CO} - x\right]} - K_{eq}(T) = 0$$

where x is the shift to equilibrium in kmol/hr.

Solve for x and the reactor product flow rates for the given temperature.

Water-gas shift equilibrium

Water-ga	s shift equilil	orium				
					Feed	Product
Starter					Rates	Rates
	Т	1200	degC		kgm	ol/h
	ТК	1572.2	к	H ₂	450	550.0
	Keq	0.380		CO ₂	50	150.0
				H ₂ O	1150	1050.0
	x	100.0		CO	500	400.0
	Eqn error	-0.1835				
$f(x) = \frac{\left[Feed_{H_2} + x\right] \cdot \left[Feed_{co_2} + x\right]}{\left[Feed_{H_2O} - x\right] \cdot \left[Feed_{co} - x\right]} - K_{eq}(T) = 0$						

water-gas_starter.xlsx

Water-gas shift equilibrium Using Goal Seek Not convenient for a case study because the solution is not "live" on the spreadsheet. Goal Seek has to be run each time an input changes.

Water-	gas shift equilil	brium					
					Feed	Product	
					Rates	Rates	
	Т	1200	degC		kgm	ol/h	
	ТК	1572.2	к	H ₂	450	609.8	
	Keq	0.380		CO ₂	50	209.8	
				H ₂ O	1150	990.2	
	x	159.8		CO	500	340.2	
	Eqn error	-0.0001					
	$f(x) = \frac{\left[Feed_{H_2} + x\right] \cdot \left[Feed_{CO_2} + x\right]}{\left[Feed_{H_2O} - x\right] \cdot \left[Feed_{CO} - x\right]} - K_{eq}(T) = 0$						

Solving Single Algebraic Equations - Bisection

First iteration

Second iteration

Water-gas shift equilibrium

using Bisection on the sheet

	В	С	D	Е	F	G	Н
10	Iteration	x1	f(x1)	x2	f(x2)	xm	f(xm)
11	1	0	-0.34079	450	12.47723	225	0.34981
12	2	0	-0.34079	225	0.349813	112.5	-0.15256
13	3	225	0.34981	112.5	-0.15256	168.75	0.0365
14	4	112.5	-0.15256	168.75	0.036499	140.625	-0.06954
15	5	168.75	0.0365	140.625	-0.06954	154.688	-0.01979
16	۶ ۲	168 75	0 0362	151 6275		161 710	0 007/18
						ightarrow	
20	TO	102000	-4.1L-0J	+C/CO.CCT	1.J1L-0J	L)).0)	-T.4C-02
27	17	159.837341	1.3E-05	159.83047	-1.4E-05	159.834	-4.5E-07
28	18	159.837341	1.3E-05	159.83391	-4.5E-07	159.836	6.3E-06
29	19	159.833908	-4.5E-07	159.83562	6.3E-06	159.835	2.9E-06
30	20	159.833908	-4.5E-07	159.83477	2.92E-06	159.834	1.2E-06
31	21	159.833908	-4.5E-07	159.83434	1.23E-06	159.834	3.9E-07

water-gas_bisectiontable.xlsx

Water-gas shift equilibrium

using Bisection on the sheet

Water-gas shift equilibrium						
					Feed	Product
On-sheet [Bisection Stra	ategy			Rates	Rates
	T 1200				kgm	ol/h
	ТК	1572.2	к	H ₂	450	609.8
	Keq	0.380		CO ₂	50	209.8
				H ₂ O	1150	990.2
	X	159.8	$\left \right\rangle$	СО	500	340.2
	Eqn error	0.0000				

Live solution amenable to a Data Table case study.

Water-gas Shift Equilibrium

Data Table case study

	х				
Temperature (degC)	159.8341	H ₂	CO2	H ₂ O	со
500	329.9	779.9	379.9	370.1	170.1
525	320.0	770.0	370.0	380.0	180.0
550	310.4	760.4	360.4	389.6	189.6
575	301.2	751.2	351.2	398.8	198.8
600	292.3	742.3	342.3	407.7	207.7
625	283.8	733.8	333.8	416.2	216.2
650	275.6	725.6	325.6	424.4	224.4
675	267.0	717 0	217 0	100.0	ר רכר
	•		•	(
1330	142.1	JJ2.1	172.1	557.5	337.5
1375	139.4	589.4	189.4	560.6	360.6
1400	136.9	586.9	186.9	563.1	363.1
1425	134.5	584.5	184.5	565.5	365.5
1450	132.1	582.1	182.1	567.9	367.9
1475	129.8	579.8	179.8	570.2	370.2
1500	127.6	577.6	177.6	572.4	372.4

Water-gas Shift Equilibrium

Option Explicit
Function Bisect(x1, x2, T)
Dim xm, Count As Integer
For Count = 1 To 20
xm = (x1 + x2) / 2
If $f(xm, T) * f(xl, T) > 0$ Then
x1 = xm
Else
$x^2 = xm$
End If
Next Count
Bisect = xm
End Function
Euroption f(r. T)

```
Function f(x, T)
Dim TK, Keq, FdH2, FdCO2, FdH2O, FdCO
TK = T + 273.15
Keq = Exp(-3.112 + 3317 / TK)
FdH2 = Range("FeedH2")
FdCO2 = Range("FeedH2O")
FdH2O = Range("FeedH2O")
FdCO = Range("FeedH2O")
fdCO = Range("FeedCO")
f = (FdH2 + x) * (FdCO2 + x) / (FdH2O - x) / (FdCO - x) - Keq
End Function
```

Using VBA bisection user-defined function

Solution is still live, so is amenable to case study. Much more compact on the spreadsheet.

water-gas_bisectionUDF.xlsx₀

Similar methods can be employed using the same on-sheet and VBA UDF live solution strategies:

- Root-finding
 - o false position
 - Newton's method
 - o secant method
 - Wegstein method [x = g(x)]
- Extremum-finding
 - o binary search
 - Golden Section search
 - o gradient method
 - o hybrid methods, e.g., Levenberg-Marquardt

n equations in n unknowns

 $\mathbf{I} \cdot \mathbf{x} = \mathbf{A}^{-l} \cdot \mathbf{b}$

Solving the equations:

1. matrix algebra and computations $\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$

2. more efficient numerical method

- Gaussian elimination with enhancements
- LU decomposition

 $\mathbf{x} = \mathbf{A}^{-l} \cdot \mathbf{b}$ compute the inverse of **A** and multiply it by **b**

LinearEquationsStarter.xlsx

Example problem: Six-stage absorber column

Equilibrium relationship on tray $i y_i = ax_i + b$ x_0, y_7, L and G specified Component material balance on tray i $L \cdot x_{i-1} + G \cdot y_{i+1} = L \cdot x_i + G \cdot y_i$ Incorporate equilibrium relationship $L \cdot x_{i-1} - (L + G \cdot a) \cdot x_i + G \cdot a \cdot x_{i+1} = 0$

Example problem: Six-stage absorber column

Write component material balances for each tray and rearrange with unknowns on the left and knowns on the right.

$$-(L+Ga)x_{1} + Gax_{2} = -Lx_{0}$$

$$Lx_{1} - (L+Ga)x_{2} + Gax_{3} = 0$$

$$Lx_{2} - (L+Ga)x_{3} + Gax_{4} = 0$$

$$Lx_{3} - (L+Ga)x_{4} + Gax_{5} = 0$$

$$Lx_{4} - (L+Ga)x_{5} + Gax_{6} = 0$$

$$Lx_{5} - (L+Ga)x_{6} = -G(y_{7} - b)$$

This represents a set of six linear equations in the six unknown mass fractions.

Basic data: equilibrium model: a = 0.7, b = 0Operating conditions: L = 20 mol/s, G = 12 mol/s Inlet gas mole fraction: $y_7 = 0.1$ Inlet liquid mole fraction: $x_0 = 0$

Example problem: Six-stage absorber column Spreadsheet solution

Set up basic data and operating conditions:

	В	С	D	E	F
2	L	20	mol/s	yin	0.1
3	G	12	mol/s	а	0.7

Transfer the labels to name the cells to the right.

Set up a matrix for the coefficients of the linear equations:

G	H
ent	
x5	x6
0	0
0	0
0	0
8.4	0
-28.4	8.4
20	-28.4
•	x5 0 0 8.4 -28.4

	В	С	D
6	Stage No.	x1	=G*a
7	=	=-(L+ <mark>G</mark> *a)	8.4
8	=L	20	-28.4

Name the matrix **A_coef**.

Absorber.xlsx 16

Example problem: Six-stage absorber column

Spreadsheet solution

Set up a vector **b** for the constants

	J	К	
6	Stage No.	Constant	
7	1	0	
8	2	0	
9	3	0	
10	4	0	
11	5	0	
12	6	-1.2	=-G*yin
13		b	

Solve for **x** using **A_coef**⁻¹***b**

Liquid Mole Fractions
=MMULT(MINVERSE(A_coef),b)
0.00154
0.00413
0.0103
0.0249
0.0598

	М	Ν	0
6	Stage No.	Liquid Mole I	Fractions
7	1	0.000456	
8	2	0.00154	
9	3	0.00413	
10	4	0.0103	
11	5	0.0249	
12	6	0.0598	

Since this is an array formula, remember to select all cells and *Ctrl-Shift-Enter*.

The **y** values could be computed using the equilibrium relationship.

This is a live solution and amenable to case studies using the Data Table.

$$f_1(x_1, x_2, \dots, x_n) = 0$$

$$f_2(x_1, x_2, \dots, x_n) = 0$$

$$\vdots$$

$$f_n(x_1, x_2, \dots, x_n) = 0$$

or

$$\mathbf{f}(\mathbf{x}) = \mathbf{0}$$

Common solution technique: Newton's Method

Start with an initial estimate of the solution: \mathbf{x}^{θ}

Iterate with $\mathbf{x}^{i+1} = \mathbf{x}^i - \mathbf{J}^{-1}(\mathbf{x}^i) \cdot \mathbf{f}(\mathbf{x}^i)$ until a convergence criterion is met.

Jacobian matrix $\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$

or, where analytical derivatives are difficult:

$$\frac{\partial f_1}{\partial x_1} (\mathbf{x}^i) \cong \frac{f_1 (x_1^i + \delta, x_2^i, \dots, x_n^i) - f_1 (x_1^i - \delta, x_2^i, \dots, x_n^i)}{2 \cdot \delta}$$

and so forth.

Example problem: steam/water equilibrium

$$P \cdot V = \frac{m}{MW} \cdot R \cdot (T + 273.15)$$

 $\log_{10} P = A - \frac{B}{T+C}$

A = 11.21 B = 2354.7 C = 280.71

Antoine equation

- P: absolute pressure, Pa A, B, C: Antoine constants for H₂O
- V : vapor volume, m³
- *m* : mass of vapor, kg

MW: H₂O molecular weight, \cong 18.02 kg/kgmol

- R : gas law constant, 8314 (Pa•m³)/(kgmol•K)
- T : temperature, °C

Operating conditions: $m = 3.755 \ kg$ $V = 3.142 \ m^3$

Solve for P and T.

SteamEquilibriumStarter.xlsx

19

Example problem: steam/water equilibrium Formulating the problem for solution

$$f_{1}(T,P) = P \cdot V - \frac{m}{MW} \cdot R \cdot (T + 273.15) \qquad \mathbf{J}\left(\begin{bmatrix}P\\T\end{bmatrix}\right) = \begin{bmatrix} V & -\frac{m}{MW} \cdot R \\ \frac{1}{\ln(10) \cdot P} & -\frac{B}{(C+T)^{2}} \end{bmatrix} \qquad \begin{array}{c} \text{analytical} \\ \text{Jacobian} \\ \text{practical} \\ \text{in this case} \end{bmatrix}$$

A possible issue here is the comparative scaling of the two equations. Typical values for the PV term could be of magnitude 10⁶; whereas, terms in the second equation are closer to unity. A practical approach to this is to scale the first equation by dividing it by, e.g., 100,000.

20

$$f_{1}(T,P) = \left(P \cdot V - \frac{m}{MW} \cdot R \cdot (T+273.15)\right) / 100000 \qquad \mathbf{J}\left(\begin{bmatrix}P\\T\end{bmatrix}\right) = \begin{bmatrix}V/1e5 & -\frac{m}{MW} \cdot R / 1e5\\\frac{1}{\ln(10) \cdot P} & -\frac{B}{(C+T)^{2}}\end{bmatrix}$$

Example problem: steam/water equilibrium

Solution with Excel's Solver

	А	В	С	D	E
1	Rgas	8314	Pa*m ³ /(kgmo	ol*K)	
2	MW	18.02	kg/kgmol		
3				Α	11.21
4	V	3.142	m ³	В	2354.7
5	m	3.755	kg/kgmol	Cc	280.7

Set up basic data and operating conditions. Name cells according to labels.

А	В
Р	200000
Т	110.0
	A P T

Create cells for initial estimates.

SteamEquilibriumStarter.xlsx

Example problem: steam/water equilibrium

Solution with Excel's Solver

Add function evaluations and sum of squares of equation errors

	А	В	С	
10	P	200000	-0.3540	=(P*V-m/MW*Rgas*(T+273.15))/100000
11	Т	110.0	0.1179	=LOG10(P)-A+B/(T+Cc)
12			0.1392	=SUMSQ(C10:C11)

Set up the Solver

Data		•			Solver Parameters
		A	В	C	
Data Analysis	10	Р	200000	-0.3540	Set Objective: \$C\$12
?→ Solver	11	Т	110.0	0.1179	To: <u>Max</u> Min <u>V</u> alue Of:
Analyze	12			0.1392	By Changing Variable Cells:
Analyze	13				P,T
					22

Example problem: steam/water equilibrium Solution with Excel's Solver

SteamEquilibriumSolverFinish.xlsx

Example problem: steam/water equilibrium Solution with Excel - live Newton's Method

SteamEquilibriumStarter.xlsx

	А	В	С	
		Initial	Current	
9		Estimates	Values	
10	Р	200000	=B10	
11	Т	110.0		
10				

Enter pointer formulas to transfer Initial Estimates to Current Values. Do not name the Initial Estimates cells this time.

	Α	В	С	D
		Initial	Current	Function
9		Estimates	Values	Evaluation
10	Р	200000	200000	-3.54E-01
11	Т	110.0	110	1.18E-01

=(C10*V-m/MW*Rgas*(C11+273.15))/100000 =LOG10(C10)-A+B/(C11+Cc)

Evaluate functions given Current Values.

Example problem: steam/water equilibrium Solution with Excel

Jacobian matrix evaluated in terms of Current Values

	А	В	С		
13		Jacobian Matr	ix		
14	J	3.142E-05	-1.732E-02	=V/100000	=-m/MW*Rgas/100000
15		2.171E-06	-1.543E-02	=1/LN(10)/C10	=-B/(Cc+C11)^2
	n	amed J			

	А	В	С	
17		Inverse of Jaco	obian Matrix	
18	Jinv	3.451E+04	-3.875E+04	=MINVERSE(J)
19		4.857E+00	-7.028E+01	

named Jinv

Example problem: steam/water equilibrium

Compute the new estimate using Newton's formula

	Α	B	С	D	E
		Initial	Current	Function	New
9		Estimates	Values	Evaluation	Estimate
10	Р	200000	200000	-3.54E-01	216782
11	Т	110.0	110	1.18E-01	120.0

=C10:C11-MMULT(Jinv,D10:D11)

Set up the iterative solver for a single calculation

File

> Options

Formulas

Map the New Estimate back to the Current Value for 1 iteration *Ctrl-Shift-Enter*

	C	D	E
	Current	Function	New
9	Values	Evaluation	Estimate
10	=E10:E11	-3.54E-01	216782
11	110	1.18E-01	120.0

Enable iterative calculation							
Maximum Iterations: 1							
Maximum <u>C</u> hange:	0.00001						

	С	C D	
	Current	Function	New
9	Values	Evaluation	Estimate
10	216782	-3.54E-01	233564
11	120	1.18E-01	130.0

Example problem: steam/water equilibrium

Press the Calc key (F9) a number of times to see whether the method converges.

	Initial	Current	Function	New
	Estimates	Values	Evaluation	Estimate
Ρ	200000	212874	-2.33E-15	212456
Т	110.0	113	1.00E-01	112.2

In this case, it doesn't converge to the solution. This is typical of Newton's method which tends either to converge rapidly or not be stable.

To promote convergence, a common technique is to incorporate a decelerator

shown as $\mathbf{x}^{i+1} = \mathbf{x}^i - decel \cdot \mathbf{J}^{-1}(\mathbf{x}^i) \cdot \mathbf{f}(\mathbf{x}^i) \qquad 0 < decel \le 1$

	Initial	Current	Function	New
	Estimates	Values	Evaluation	Estimate
Ρ	200000	216880	0.00E+00	216880
Т	110.0	120	0.00E+00	120.2
			decel	0.5

=C10:C11-decel*MMULT(Jinv,D10:D11) 110.0 120 0.00E+00 120.2

For a decelerator value of 0.5, the calculation converges to the solution.

Example problem: steam/water equilibrium

Set the iterative solver to 1000 Maximum Iterations, and the solution is always displayed.

Enable <u>i</u> terative calcula	Enable iterative calculation						
Maximum Iterations: 1,000							
Maximum <u>C</u> hange:	0.00001						

Add a provision to reset the calculation to the initial estimates.

	Α	В	С	D	E
10	=if(Reset	t,B10:B11,E10:E	11)	0.00E+00	216880
11	Т	110.0	120.2	-7.59E-11	120.2
10					

	Г	Initial	Current
Reset		Estimates	Values
TRUE	Ρ	200000	200000
Ţ	Т	110.0	110.0

		Current	Function
Reset		Values	Evaluation
FALSE		216880	1.16E-15
		120.2	4.17E-10

Example problem: steam/water equilibrium

Add an on-screen checkbox to control the Reset cell.

Format Control

Using the Euler Method to Solve Differential Equations

Single equation with initial value

Approximations include errors that accumulate as the solution proceeds.

Errors are reduced as step size

 $h_i = t_{i+1} - t_i$ decreases. Very small step sizes increase computational effort and may lead to round off errors. Other more complicated schemes, such as the Runge-Kutta and predictor-corrector methods control error better but are more difficult to implement in Excel/VBA.

30

Single Equation Example – Isothermal Batch Reactor $A + B \stackrel{k}{\Rightarrow} C$

Rate of disappearance of A: $\frac{dC_A}{dt} = -k \cdot C_A \cdot C_B$

Initial conditions: $C_A(\theta) = C_{A\theta}$ $C_B(\theta) = C_{B\theta}$ $C_C(\theta) = C_{C\theta}$

Basic data: $k = 14.7 \frac{l}{mol/L} \cdot \frac{l}{min}$

Initial conditions: $C_{A0} = 0.0209 \frac{mol}{L}$ $C_{B0} = C_{A0}/3$ $C_{C0} = 0$

Stoichiometric relationships: $C_B(t) = C_{B0} - (C_{A0} - C_A(t))$ $C_{C}(t) = C_{C0} + (C_{A0} - C_{A}(t))$

Single Equation Example – Isothermal Batch Reactor

Information Flow Diagram

Single Equation Example – Isothermal Batch Reactor

Spreadsheet solution using the Euler method $C_A(t_i + \Delta t) = C_A(t_i) + \frac{dC_A}{dt}(t_i) \cdot \Delta t$

Set up the basic data, initial conditions, and step size

В	С	D	E
k	14.7	1/((mol/L)	*min)
CA0	0.0209	mol/L	
CB0	0.00697	mol/L	
CC0	0	mol/L	
dt	0.1	min	
	CB0	CA0 0.0209 CB0 0.00697 CC0 0	CA0 0.0209 mol/L CB0 0.00697 mol/L CC0 0 mol/L

Name cells according to labels to the left.

Set up headings for the solution table

	В	С	D	E	F
8	Time	CA	CB	СС	dCA/dt

BatchReactorSingleEqnStarter.xlsx

Single Equation Example – Isothermal Batch Reactor Spreadsheet solution using the Euler method

Create the initialization row of the table

	В	С	D	E	F
8	Time	CA	CB	СС	dCA/dt
9	0	0.0209	0.00697	0	-0.002140

	В	С	D	E	F
8	Time	CA	CB	CC	dCA/dt
9	0	=CA0	=CB0	=CC0	=-k*C9*D9

Enter the first operational row

	В	С	D	Е	F
8	Time	CA	СВ	CC	dCA/dt
9	0	0.02090	0.00697	0	-0.002140
10	0.1	0.02069	0.00675	0.00021	-0.002053

	В	С	D	E	F
8	Time	CA	СВ	СС	dCA/dt
9	0	=CA0	=CB0	=CC0	=-k*C9*D9
10	=B9+dt	=C9+F9*dt	=CB0-(CA0-C10)	=CA0-C10	=-k*C10*D10

Single Equation Example – Isothermal Batch Reactor Copy the operational row down to Time = 20

	В	C	D	E	F
8	Time	CA	CB	CC	dCA/dt
9	0	0.02090	0.00697	0	-0.002140
10	0.1	0.02069	0.00675	0.00021	-0.002053
11	0.2	0.02048	0.00655	0.00042	-0.001971
12	0.3	0.02028	0.00635	0.00062	-0.001893
13	0.4	0.02009	0.00616	0.00081	-0.001820
14	0.5	0.01991	0.00598	0.00099	-0.001750
15	0.6	0.01974	0.00580	0.00116	-0.001684
16	07	0.01057	0 00561	0 00122	0 001621
• • • •					
	В	С	D	E	F
201	B 19.2	C 0.01402	D 0.00009	E 0.00688	F -0.000018
201 202			-		
	19.2	0.01402	0.00009	0.00688	-0.000018
202	19.2 19.3	0.01402	0.00009	0.00688 0.00688	-0.000018 -0.000018
202 203	19.2 19.3 19.4	0.01402 0.01402 0.01402	0.00009 0.00009 0.00008	0.00688 0.00688 0.00688	-0.000018 -0.000018 -0.000017
202 203 204	19.2 19.3 19.4 19.5	0.01402 0.01402 0.01402 0.01402	0.00009 0.00009 0.00008 0.00008	0.00688 0.00688 0.00688 0.00688	-0.000018 -0.000018 -0.000017 -0.000017
202 203 204 205	19.2 19.3 19.4 19.5 19.6	0.01402 0.01402 0.01402 0.01402 0.01401	0.00009 0.00009 0.00008 0.00008 0.00008	0.00688 0.00688 0.00688 0.00688 0.00689	-0.000018 -0.000018 -0.000017 -0.000017 -0.000017
202 203 204 205 206	19.2 19.3 19.4 19.5 19.6 19.7	0.01402 0.01402 0.01402 0.01402 0.01401 0.01401	0.00009 0.00009 0.00008 0.00008 0.00008 0.00008	0.00688 0.00688 0.00688 0.00688 0.00689 0.00689	-0.000018 -0.000018 -0.000017 -0.000017 -0.000017 -0.000016

Solving Multiple Differential Equations

Multiple Equation Models – Isothermal Batch Reactor

$$A + B \xrightarrow{k_1} C + F$$

$$A + C \xrightarrow{k_2} D + F$$

$$A + D \xrightarrow{k_3} E + F$$

$$\frac{dA}{dt} = -k_1AB - k_2AC - k_3AD$$

$$A(0) = 0.0209 \frac{mol}{L}$$

$$k_1 = 14.7 \frac{1}{mol/L} \cdot \frac{1}{min}$$

$$\frac{dC}{dt} = k_1AB - k_2AC$$

$$C(0) = 0$$

$$k_2 = 1.53 \frac{1}{mol/L} \cdot \frac{1}{min}$$

$$\frac{dD}{dt} = k_2AC - k_3AD$$

$$D(0) = 0$$

$$k_3 = 0.294 \frac{1}{mol/L} \cdot \frac{1}{min}$$
From stoichiometry:
$$E = \frac{A(0) - A - C - 2D}{3}$$
and
$$F = A(0) - A$$

Svirbely, W.J., and J.A. Blauer, *The Kinetics of Three-step Competitive Consecutive Second-order Reactions*, J. Amer. Chem. Soc., 83, 4115, 1961. Svirbely, W.J., and J.A. Blauer, *The Kinetics of the Alkaline Hydrolysis of 1,3,5,Tricarbomethoxybenzene*, J. Amer. Chem. Soc., 83, 4118, 1961.

Multiple Equation Models – Isothermal Batch Reactor Information Flow Diagram

Multiple Equation Models – Isothermal Batch Reactor Spreadsheet solution using the Euler method with variable step size Set up rate constants and initial conditions

	В	С	D	E	F	G	Н
2	k_1	14.7	1/(mol/L)/	/min	A_0	0.0209	mol/L
3	k_2	1.53			B_0	0.0069667	
4	k_3	0.294			C_0	0	
5					D_0	0	
6							

Create headings and the initialization row

	А	В	С	D	E	F	G	Н	I	J	K
7	Time (min)	А	В	С	D	E	F	dA/dt	dB/dt	dC/dt	dD/dt
8	0	0.0209	0.006967	0	0	0	0	-0.002140	-0.002140	0.002140	0

	А	В	С	D	E	F	G	Н	I	J	К
7	Time (min)	А	В	С	D	E	F	dA/dt	dB/dt	dC/dt	dD/dt
8	0	=A_0	=B_0	=C_0	=D_0	=(A_0-B8-D8-2*E8)/3	=A_0-B8	=-k_1*B8*C8-k_2*B8*D8-k_3*B8*E8	=-k_1*B8*C8	=k_1*B8*C8-k_2*B8*D8	=k_2*B8*D8-k_3*B8*E8

MultipleReactionsEulerMethodStarter.xlsx ³⁸

Multiple Equation Models – Isothermal Batch Reactor Spreadsheet solution using the Euler method with variable step size Create operational row with an initial time step of 0.1 min

	Α	В	С	D		E	F		G		Н		1	J	K
7	Time (min)	А	В	С		D	E		F	d	lA/dt	dE	3/dt	dC/dt	dD/dt
8	0	0.0209	0.006967	0		0		0	0	-0.(002140	-0.0	02140	0.002140	0.000000
9	0.1	0.02069	0.00675	0.00021	0.0	00000	0.00	000	0.00021	-0.0	002060	-0.0	02053	0.002047	0.000007
	A	В	С	D)	E			F		G			I	J
	Time	А	В	C		D			F		F		2	dt_1	0.1
7	(min)								L				3	dt_2	1
8	0	=A_0	=B_0	=C_0		=D_0		=(A_0	D-B8-D8-2*E8)/3	=A_0-B8		4	dt_3	5
9	=A8+dt_1	=B8+H8*dt_	1 =C8+I8*dt	_1 =D8+J8*	*dt_1	=E8+K8*	*dt_1	=(A_0	D-B9-D9-2*E9)/3	=A_0-B9		5	dt_4	10

	Н	I	J	К
7	dA/dt	dB/dt	dC/dt	dD/dt
8	=-k_1*B8*C8-k_2*B8*D8-k_3*B8*E8	=-k_1*B8*C8	=k_1*B8*C8-k_2*B8*D8	=k_2*B8*D8-k_3*B8*E8
9	=-k_1*B9*C9-k_2*B9*D9-k_3*B9*E9	=-k_1*B9*C9	=k_1*B9*C9-k_2*B9*D9	=k_2*B9*D9-k_3*B9*E9

39

Multiple Equation Models – Isothermal Batch Reactor Spreadsheet solution using the Euler method with variable step size Copy the operational row through the following time step ranges:

	А	В	С	D	E	F	G	Н	1	J	K
7	Time (min)	А	В	С	D	E	F	dA/dt	dB/dt	dC/dt	dD/dt
8	0	0.0209	0.006967	0	0	0	0	-0.002140	-0.002140	0.002140	0.000000
9	0.1	0.02069	0.00675	0.00021	0.00000	0.00000	0.00021	-0.002060	-0.002053	0.002047	0.000007
10	0.2	0.02048	0.00655	0.00042	0.00000	0.00000	0.00042	-0.001984	-0.001971	0.001958	0.000013
11	0.3	0.02028	0.00635	0.00061	0.00000	0.00000	0.00062	-0.001912	-0.001893	0.001874	0.000019
12	0.4	0.02009	0.00616	0.00080	0.00000	0.00000	0.00081	-0.001844	-0.001819	0.001795	0.000025
10	0 5	0.01001	0.00500	0 00000	0.00001	0.00000	0 00000	0 001 770	0.001750	0.001730	0 000030
	А	В	С	D	E	F	G	Н		J	K
534	76	0.00955	0.00000	0.00295	0.00366	0.00036	0.01135	-0.000053	0.000000	-0.000043	0.000033
535	77	0.00955	0.00000	0.00294	0.00366	0.00036	0.01135	-0.000053	0.000000	-0.000043	0.000033
536	78	0.00954	0.00000	0.00294	0.00366	0.00037	0.01136	-0.000053	0.000000	-0.000043	0.000033
537	79	0.00953	0.00000	0.00293	0.00367	0.00037	0.01137	-0.000053	0.000000	-0.000043	0.000033
		•	•		•	•	•		•	•	
	A	В	C	D	E	F	G	Н		J	K
612	440	0.00916	0.00000	0.00264	0.00389	0.00044	0.01174	-0.000047	0.000000	-0.000037	0.000026
613	450	0.00915	0.00000	0.00263	0.00389	0.00045	0.01175	-0.000047	0.000000	-0.000037	0.000026
614	460	0.00915	0.00000	0.00263	0.00389	0.00045	0.01175	-0.000047	0.000000	-0.000037	0.000026
615	470	0.00914	0.00000	0.00262	0.00389	0.00045	0.01176	-0.000047	0.000000	-0.000037	0.000026
616	480	0.00914	0.00000	0.00262	0.00390	0.00045	0.01176	-0.000047	0.000000	-0.000037	0.000026
617	490	0.00913	0.00000	0.00262	0.00390	0.00045	0.01177	-0.000047	0.000000	-0.000037	0.000026
618	500	0.00913	0.00000	0.00261	0.00390	0.00045	0.01177	-0.000047	0.000000	-0.000036	0.000026
619	510	0.00913	0.00000	0.00261	0.00390	0.00045	0.01177	-0.000047	0.000000	-0.000036	0.000026

Time	Time
Range	Step
0-50	0.1
50-100	1
100-300	5
300-500	10

Multiple Equation Models – Isothermal Batch Reactor Spreadsheet solution using the Euler method with variable step size Create a plot of the solution

41

Second-order differential equation with split boundary conditions

$$\frac{d^2 y}{dt^2} = \frac{1}{4} \frac{dy}{dt} + y \qquad y(0) = 5 \qquad y(10) = 8 \qquad 0 \le t \le 10$$

Decompose into two first-order ODEs

$$\frac{dy}{dt} = y_1 \qquad y(0) = 5 \qquad y(10) = 8$$

$$\frac{dy_1}{dt} = \frac{1}{4}y_1 + y \qquad \text{``Shooting'' Strategy} \\ 1. \text{ Estimate a value for y1 (dy/dt) at t = 0.} \\ 2. \text{ Solve the ODEs to t = 10} \\ 3. \text{ Check y(10) versus the required value, 8.} \end{cases}$$

4. Adjust the y1(0) value and repeat steps 2 and 3 until the desired y(10)=8 value is obtained.

Second-order differential equation with split boundary conditions

y_0	5	y1_0	-4.4	
t	У	y1	dy/dt	dy1/dt
0.0	5	-4.4	-4.4	3.9
0.1	4.56	-4.01	-4.01	3.56
0.2	4.16	-3.65	-3.65	3.25
0.3	3.79	-3.33	-3.33	2.96
	2 16	2 02	2 02	2 70
01	576	וכחכ	5 15	- 2/0
•	•	•	•	•
• • •	184.04	507.50 و۲	203.T2	230.33
•	•	•	•	•
• د.و	184.04	203.12	203.12	230.93
9.5 9.6	• 184.04 205.55	• 209.15 232.84	• 209.15 232.84	• 230.93 263.76
9.5 9.6 9.7	• 184.04 205.55 228.84	209.15 232.84 259.22	209.15 232.84 259.22	230.93 263.76 293.64

y(10) = 8 clearly not met

SecondOrderODEStarter.xlsx

Second-order differential equation with split boundary conditions Use the Solver to adjust y1(0) to achieve y(10) = 8

Solver Parameters			y_() 5	y1_0	-4.4136	
Se <u>t</u> Objective:	\$C\$106		t	У	y1	dy/dt	dy1/dt
-			0.0	5	-4.4136	-4.41	3.8966
To: <u>M</u> ax <u>Min</u>	Value Of:	8	0.1	4.56	-4.02	-4.02	3.55
By Changing Variable Cells:			0.2	4.16	-3.67	-3.67	3.24
y1_0			0.3	3.79	-3.34	-3.34	2.95
			0.4	२ ∆ 5	-3 05	-3 05	2 69
Subject to the Constraints:			•	•	•	•	•
Subject to the Constraints: y1_0 <= -4 y1_0 >= -5		^	9.5	● 4.58	● 5.30	● 5.30	.
y1_0 <= -4		^	•	-	-	-	6.68
y1_0 <= -4		^	9.5	4.68	5.30	5.30	
y1_0 <= -4		^	9.5 9.6	4.68 5.21	5.30 5.90	5.30 5.90	6.68
y1_0 <= -4		^	9.5 9.6 9.7	4.68 5.21 5.80	5.30 5.90 6.57	5.30 5.90 6.57	6.68 7.44
y1_0 <= -4		^	9.5 9.6 9.7 9.8	4.68 5.21 5.80 6.45	5.30 5.90 6.57 7.31	5.30 5.90 6.57 7.31	6.68 7.44 8.28

SecondOrderODE.xlsx

y(10) = 8 met

44

Second-order differential equation with split boundary conditions

45

Example: tube-in-tube, countercurrent heat exchanger

$$\frac{dT_c}{dz} = \frac{h_i A_i}{w_c C_c} (T_h - T_c) \qquad T_c (0) = T_{ci}$$
$$\frac{dT_h}{dz} = \frac{h_o A_o}{w_h C_h} (T_h - T_c) \qquad T_h (L) = T_{hi}$$

Example: tube-in-tube, countercurrent heat exchanger

- *z*: distance down the heat exchanger from the cold fluid inlet (on the left)
- *L*: length of the heat exchanger
- T_c : temperature of the cold fluid, a function of z
- T_{a} : cold water inlet temperature, at z=0
- T_{hi} : hot water inlet temperature, at z = L
- T_h : temperature of the hot fluid, a function of z
- w_c : mass flow rate of cold fluid
- W_h : mass flow rate of hot fluid
- C_c : heat capacity of cold fluid
- C_h : heat capacity of hot fluid
- A_i : inside area for heat transfer (cold fluid) per unit length
- A_o : outside area for heat transfer (hot fluid) per unit length
- h_i : inside heat transfer coefficient (cold fluid)
- h_o : outside heat transfer coefficient (hot fluid)

Example: tube-in-tube, countercurrent heat exchanger

$$\frac{dT_c}{dz} = \frac{h_i A_i}{w_c C_c} (T_h - T_c) \qquad T_c (0) = T_{ci}$$
$$\frac{dT_h}{dz} = \frac{h_o A_o}{w_h C_h} (T_h - T_c) \qquad T_h (L) = T_{hi}$$

The issue we have with solving these equations is that the cold stream boundary condition is at z = 0 and the hot stream boundary condition is at z = 1, the other end of the heat exchanger. A practical way to handle this is to estimate the hot stream temperature at z = 0, proceed with the solution, and adjust that estimate later on to meet the condition at z = L.

Example: tube-in-tube, countercurrent heat exchanger

Basic data and operating conditions									
Outer tube 11 BWG OD 2 in, ID 1.76 in	Inner tube 11 BWG OD 1 in, ID	e Length 5 m ID 0.76 in							
	00 1 11, 10								
Inlet temperatures Hot stream 50 °C	Fluid dens 988 kg/m ³		Heat capacity (H ₂ O) 4187 J/(kg⋅°C)						
Cold stream 10 °C	900 kg/m		4107 J/(kg· C)						
Hot stream flow rate 1 Cold stream 0.3 L/s	L/s	Heat transfe h _i = 5000 W/							

Example: tube-in-tube, countercurrent heat exchanger

	А	В	С	D	E	F							
1	Countercurrer	nt Tube-in	-tube H	eat Exchanger									
2													
3	Tubing specs			density	988	kg/m³							
4	Outer	11	BWG	Heat capacity				А	В	С	D	E	F
5	OD	2	inches	Ср	4186.8	J/kg/degC	16	Outside Area	0.785	in ²	Heat transfer	coefficient	t
6		0.0508	m	Flow rates			17		0.000507	m ²	hi	5000	W/m²/degC
7	ID	1.76	inches	Shell/hot	1.00	L/s	18	Inside Area	0.454	in ²	ho	3800	W/m²/degC
8		0.0447	m		0.001	m³/s	19		0.000293	m ²	Heat transfer	areas/leng	th
9	Inside Area	2.43		wh	0.988	kg/s	20	Length L	5	m	Ai	0.0606	m²/m
10		0.00157	m²	Tube/cold	0.30	L/s	21				Ao	0.0798	m²/m
11	Inner	11	BWG		0.0003	m³/s	22				Inlet tempera		,
12	OD	1	inch	wc	0.296	kg/s	23				Hot - Thi		degC
13	Do	0.0254	m	Linear velocit	ies		24				Cold - Tci		degC
14	ID	0.76	inches	Shell/hot	0.94	m/s	24					10	0080
15	Di	0.0193	m	Tube/cold	1.03	m/s							

CountercurrentHeatExchanger.xlsm

Solving Multiple Differential Equations Example: tube-in-tube, countercurrent heat exchanger

	Н	- I	J	K	L	M	
2	Hot outlet	temperat	ure		Error ²		
3	Tho	40.0	degC		6.71		
4							
5	Index	Distance	Тс	Th	dTc/dz	dTh/dz	
6	0	0	10	40.00	7.3	2.2	
7	1	0.05	10.37	40.11	7.3	2.2	
8	2	0.1	10.73	40.22	7.2	2.2	
9	3	0.15	11.09	40.33	7.1	2.1	
10	4	0.2	11.45	40.43	7.1	2.1	
11	5	0.25	11.80	40.54	7.0	2.1	
12	6	0.3	12.15	40.65	7.0	2.1	
10	- 7	0.25	12 50	40.75		2.1	
							-
100	94	4.7	33.74	47.12	3.3	3 1.0	
101	. 95	4.75	33.90	47.17	3.2	2 1.0	Hot inlet temperature (50 degC)
102	96	4.8	34.07	47.22	3.2	2 1.0	condition not met
103	97	4.85	5 34.23	47.27	3.2	2 1.0	condition not met
104				47.32			-
105							-
106	100	5	34.70	47.41) 3.:	L 0.9	51

Example: tube-in-tube, countercurrent heat exchanger

Employ Solver to adjust the hot stream outlet temperature so that its inlet condition is met.

Solver Parameters		Hot outle	t tempera	ature		Error ²	
Se <u>t</u> Objective: esq		Tho	42.	1 degC		0.00	
To: O Max I Min O Value Of:		99	4.95	36.24	49.95	3.3	1.0
<u>By</u> Changing Variable Cells:	L	100	5	36.41	(50.00)	3.3	1.0
Th0							

Example: tube-in-tube, countercurrent heat exchanger

53

Example: tube-in-tube, countercurrent heat exchanger

Record macro to run the Solver

```
Option Explicit
Sub SolveHtExr()
'
' SolveHtExr Macro
'
SolverOk SetCell:="$L$3", MaxMinVal:=2, ValueOf:=0, ByChange:="$I$3", Engine:=1 _
, EngineDesc:="GRG Nonlinear"
SolverSolve
End Sub
```

Necessary to add Solver reference in VBE

Example: tube-in-tube, countercurrent heat exchanger

Modify macro to bypass confirmation dialog box

Add button on spreadsheet to run macro

Developer	Assign Macro Macro name: SolveHtExr SolveHtExr	Button 1
		Solve

Finding a maximum or minimum of a function with a

single adjustable variable HumpsOptimizationStarter.xlsx Example $y = \frac{1}{(x-0.3)^2 + 0.01} + \frac{1}{(x-0.9)^2 + 0.04} - 6$ **Humps Function** х y 120 5.18 0.00 0.01 5.83 100 0.02 6.54 0.03 7.32 80 8.17 0.04 0.05 0 10 There is a local maximum near x = 0.9> 60 and a true maximum near x = 0.30.94 ZU.4Z 0.95 19.84 40 19.18 0.96 0.97 18.45 20 17.67 0.98 0.99 16.85 n 1.00 16.00 0.2 0.3 0.7 0.0 0.1 0.4 0.5 0.6 0.8 0.9 1.0 56 х

Finding the maximum of a function with a single adjustable variable

Finding the maximum of a function with a single adjustable variable Using the GRG Nonlinear Multistart option

Les e	Options	? ×
Solver Parameters	All Methods GRG Nonlinear Evolutionary	
Se <u>t</u> Objective:	Convergence: 0.0001	
To: <u>Max</u> <u>Min</u> <u>V</u> alue Of:	Derivatives O Eorward Central	
By Changing Variable Cells:	Multistart	
	Use Multistart	
Subject to the Constraints:	Population Size: 100	
x >= 0	Random Seed: 0	
	Require <u>B</u> ounds on Variables	
4.2		
S <u>e</u> lect a Solving GRG Nonlinear Method:	C Options	
	x 0.30038	3
	Finds the true maximum y 96.50	1 58

Finding a maximum or minimum of a function with a single adjustable variable - the Golden Section search

This is a bracketing method, similar to bisection. The figure shows a curve f(x)with a minimum between two initial estimates, a and b. Instead of using the midpoint between a and b, an overlapping interval d is used to compute x_1 and x_2 . The interval is given by

$$d = \frac{\sqrt{5} - l}{2} \cdot (b - a)$$

where $\frac{\sqrt{5} - l}{2}$ is the Golden Ratio (*GR*)
with the unique property $GR = \frac{l}{l + GR}$

lf

Finding a maximum or minimum of a function with a single adjustable variable - the Golden Section search

For the figure to the right, we can see that

$$f(x_2) > f(x_1)$$

and that leads to the conclusion that the minimum must be between x_2 and b, and the interval $[a,x_2]$ can be excluded. This implies that x_2 becomes the new a for the next iteration of the method.

$$f(x_1) > f(x_2)$$

the interval $[x_1,b]$ would be excluded and x_1 would become the next b. For each iteration, the interval containing the minimum is reduced by a factor of GR.

Any ratio other than *GR* that is greater than 0.5 and less than 1 could be used. The advantage of using the *GR* is that, for the first scenario above, x_1 is the x_2 value for the next iteration, avoiding the need to compute $f(x_2)$ then.

HumpsOptimizationStarter.xlsx

Golden Section search to find a minimum of the humps function

Golden Section search to find a minimum of the humps function

	А		В	С	D	E	F	G	Н			
5		2	0.553	0.647	🔨 11.28	0.706	12.58	0.8	0.153			
First operational row												
	А		В	C			D					
5 =	=A4+1	=IF	(D4>F4,C4,B4)	=G5-H5	5 =1/((C5-0	.3)^2+0.01)+1/	/((C5-0.9)^2+0	.04)-6				
			E 5 =B5+H5	=1/((F5	F	G =IF(F4>D4,E4,G	(4) =GR*	H (G5-B5)	Result from	Row 33		
С	ору		5 -651115	-1/((L3	0.57 210.017	-11 (14204,04,04,0	-51	(03-03)	Minimum at	0.637		
de	own \downarrow								Value	11.25		
	А		В	С	D	E	F	G /	н			
30	1	27	0.637	0.637	11.25	0.637	11.25	0.ø37	0.000			
31	2	28	0.637	0.637	11.25	0.637	11.25	0.637	0.000			
32	2	29	0.637	0.637	11.25	0.637	11.25	0.637	0.000			
33	3	30	0.637	0.637	11.25	0.637	11.25	0.637	0.000			
	1									62		

Golden Section search to find a minimum of the humps function

VBA Function for Golden Section search

Option Explicit
Function MinGold(a, b, maxit)
Dim GR, x1, x2, d, i As Integer
GR = (Sqr(5) - 1) / 2
For i = 1 To maxit
d = GR * (b - a)
x1 = a + d
$x^2 = b - d$
If $f(x2) > f(x1)$ Then
a = x2
Else
b = x1
End If
Next i
MinGold = (x1 + x2) / 2
End Function

MinGold VBA functio									
а	0.4								
b	0.8								
maxit	30								
Minimum at	0.637								
Value	11.25								

	J	K
7	MinGold VBA function	
8	а	0.4
9	b	0.8
10	maxit	30
11	Minimum at	=mingold(a,b,maxit)
12	Value	=f(K11)

Function f(x)

f = 1 / ((x - 0.3) ^ 2 + 0.01) + 1 / ((x - 0.9) ^ 2 + 0.04) - 6 End Function

Finding a maximum or minimum of a function with multiple adjustable variables and one or more constraints

Example:

Optimal grain bin design

Minimize surface area not including the top

Constraints

$$V = V_{cyl} + V_{con} = 10 \text{ m}^3$$
$$\phi_{max} = 20.4^{\circ}$$

Example: Optimal grain bin design

Initial Scenario

GrainBin.xlsx

radius	1	m	Vcyl	3.14159	m ³	Scyl	6.28319	m ²	phi	0.7854	radians
hcyl	1	m	Vcon	1.0472	m ³	Scon	4.44288	m ²	phid	45	degrees
hcon	1	m	V	4.18879	m ³	S	10.7261	m ²			

Volume spec not met

Angle limit violated

Formulas

radius	1	m	Vcyl	=PI()*radius^2*hcyl	m ³	Scyl	=2*PI()*radius*hcyl	m ²	phi	=ATAN(radius/hcon)	radians
hcyl	1	m	Vcon	=PI()*radius^2*hcon/3	m ³	Scon	=PI()*radius*SQRT(radius^2+hcon^2)	m ²	phid	=DEGREES(phi)	degrees
hcon	1	m	V	=Vcyl+Vcon	m ³	S	=Scyl+Scon	m²			

Example: Optimal grain bin design

Solver P	Parameters		
Se <u>t</u>	Objective:		S
To:	<u>М</u> ах	Мі <u>п</u>	◯ <u>V</u> alue Of
<u>B</u> y (Changing Variable (Cells:	
rad	lius,hcyl,hcon		
V =	ject to the Constrai : 10 d <= 20.4	ints:	

Polynomial regression

Example:

ensity of Wt%		-Water Sol	utions at 20	
Wt%	Donaite			Jaegu
	Density			
lethanol	(kg/m ³)			
0	998.2			
10	981.5			
20	966.6			
30	951.5			
40	934.5			
50	915.6			
60	894.6			
70	871.5			
80	846.9			
90	820.2			
100	791.7			
	ethanol 0 10 20 30 40 50 60 70 80 90	ethanol(kg/m³)0998.210981.520966.630951.540934.550915.660894.670871.580846.990820.2	ethanol (kg/m³) 0 998.2 10 981.5 20 966.6 30 951.5 40 934.5 50 915.6 60 894.6 70 871.5 80 846.9 90 820.2	ethanol (kg/m³) 0 998.2 10 981.5 20 966.6 30 951.5 40 934.5 50 915.6 60 894.6 70 871.5 80 846.9 90 820.2

MethanolWaterDensityStarter.xlsx

Polynomial regression

Using Trendline

Initial fit is a straight line – clearly inadequate

Curve-Fitting Polynomial regression Using Trendline 1050 Format Trendline X \sim Trendline Options 🗸 \diamond Density - kg/m3 ۰ ✓ Trendline Options Exponential O Linear garithmic O Polynomial Or<u>d</u>er 3 Set Intercept 750 0 10 Display Equation on chart Display <u>R</u>-squared value on chart

Polynomial regression

Using the Data Analysis Regression tool

		C	D	E	F	G	Н
Wt%	Density		1	2	2	л	F
ethanol	(kg/m ³)		T	Z	3	4	5
0	998.2		0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
10	981.5		1.0E+01	1.0E+02	1.0E+03	1.0E+04	1.0E+05
20	966.6		2.0E+01	4.0E+02	8.0E+03	1.6E+05	3.2E+06
30	951.5		3.0E+01	9.0E+02	2.7E+04	8.1E+05	2.4E+07
40	934.5		4.0E+01	1.6E+03	6.4E+04	2.6E+06	1.0E+08
50	915.6		5.0E+01	2.5E+03	1.3E+05	6.3E+06	3.1E+08
60	894.6		6.0E+01	3.6E+03	2.2E+05	1.3E+07	7.8E+08
70	871.5		7.0E+01	4.9E+03	3.4E+05	2.4E+07	1.7E+09
80	846.9		8.0E+01	6.4E+03	5.1E+05	4.1E+07	3.3E+09
90	820.2		9.0E+01	8.1E+03	7.3E+05	6.6E+07	5.9E+09
100	791.7		1.0E+02	1.0E+04	1.0E+06	1.0E+08	1.0E+10
	ethanol 0 10 20 30 40 50 60 70 80 90	ethanol (kg/m ³) 0 998.2 10 981.5 20 966.6 30 951.5 40 934.5 50 915.6 60 894.6 70 871.5 80 846.9 90 820.2	ethanol (kg/m³) 0 998.2 10 981.5 20 966.6 30 951.5 40 934.5 50 915.6 60 894.6 70 871.5 80 846.9 90 820.2	ethanol (kg/m ³) 1 0 998.2 0.0E+00 10 981.5 1.0E+01 20 966.6 2.0E+01 30 951.5 3.0E+01 40 934.5 4.0E+01 50 915.6 5.0E+01 60 894.6 6.0E+01 70 871.5 7.0E+01 80 846.9 8.0E+01 90 820.2 9.0E+01	ethanol (kg/m³) 1 2 0 998.2 0.0E+00 0.0E+00 10 981.5 1.0E+01 1.0E+02 20 966.6 2.0E+01 4.0E+02 30 951.5 3.0E+01 9.0E+02 40 934.5 4.0E+01 1.6E+03 50 915.6 5.0E+01 2.5E+03 60 894.6 6.0E+01 3.6E+03 70 871.5 7.0E+01 4.9E+03 80 846.9 8.0E+01 6.4E+03 90 820.2 9.0E+01 8.1E+03	ethanol(kg/m³)1230998.20.0E+000.0E+000.0E+0010981.51.0E+011.0E+021.0E+0320966.62.0E+014.0E+028.0E+0330951.53.0E+019.0E+022.7E+0440934.54.0E+011.6E+036.4E+0450915.65.0E+012.5E+031.3E+0560894.66.0E+013.6E+032.2E+0570871.57.0E+014.9E+033.4E+0580846.98.0E+016.4E+035.1E+0590820.29.0E+018.1E+037.3E+05	ethanol12340998.20.0E+000.0E+000.0E+000.0E+0010981.51.0E+011.0E+021.0E+031.0E+0420966.62.0E+014.0E+028.0E+031.6E+0530951.53.0E+019.0E+022.7E+048.1E+0540934.54.0E+011.6E+036.4E+042.6E+0650915.65.0E+012.5E+031.3E+056.3E+0660894.66.0E+013.6E+032.2E+051.3E+0770871.57.0E+014.9E+033.4E+052.4E+0780846.98.0E+016.4E+035.1E+054.1E+0790820.29.0E+018.1E+037.3E+056.6E+07

Polynomial regression

Using the Data Analysis Regression tool

 $\rho = 998.2 - 1.853w + 0.02463w^2 - 6.489 \times 10^{-4} w^3 + 5.673 \times 10^{-6} w^4 - 1.859 \times 10^{-8} w^5$

MethanolWaterDensity.xlsx

71

Polynomial regression

Using the Data Analysis Regression tool

No significant pattern. Model is adequate.

Multilinear regression

Model $y = \beta_0 + \beta_1 f_1(x_j, j = 1,...,m) + \beta_2 f_2(x_j, j = 1,...,m) + \dots + \beta_k f_k(x_j, j = 1,...,m)$

Dataset $\{y_i, x_{1i}, \dots, x_{mi}, i = 1, \dots, n\}$

Minimize V by choice of $\hat{\beta}$ via calculus

Normal equations

$$(\mathbf{X}^T\mathbf{X})\mathbf{b} = \mathbf{X}^T\mathbf{y}$$

Fitted model parameters

$$\mathbf{b} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

Multilinear regression

Example

Density of							
			rature				
		0 °C	10 ºC	25 °C	40 °C		
	1	1.00747	1.00707	1.00409	0.99908		
	2	1.01509	1.01442	1.01112	1.00593		
	4	1.03038	1.02920	1.02530	1.01977		
Wt %	8	1.06121	1.05907	1.05412	1.04798		
NaCl	12	1.09244	1.08946	1.08365	1.07699		
Naci	16	1.12419	1.12056	1.11401	1.10688		
	20	1.15663	1.15254	1.14533	1.13774		
	24	1.18999	1.18557	1.17776	1.16971		
	26	1.20709	1.20254	1.19443	1.18614		
from Perry	from Perry's Chemical Engineer's Handbook ,						
Green and	l South	nard, Ed., 9	th Ed., p. 2	2-103.			

Model

$$\phi = \beta_0 + \beta_1 w + \beta_2 T + \beta_3 w^2 + \beta_4 T^2 + \beta_5 wT$$

NaClDensityRegressionStarter.xlsx

Multilinear regression using Data Analysis Regression tool Set up X-Input array

wt%	degC	dens		W	Т	w2	T2	wT
1	0	1.00747		1	0	1	0	0
2	0	1.01509		2	0	4	0	0
4	0	1.03038		4	0	16	0	0
8	0	1.06121		8	0	64	0	0
12	0	1.09244		12	0	144	0	0
16	0	1.12419		16	0	256	0	0
20	0	1.15663		20	0	400	0	0
24	0	1.18999		24	0	576	0	0
26	0	1.20709		26	0	676	0	0
1	10	1.00707		1	10	1	100	10
2	10	1.01442		2	10	4	100	20
	10	1 00000					100	

 $\rho = \beta_0 + \beta_1 w + \beta_2 T + \beta_3 w^2 + \beta_4 T^2 + \beta_5 wT$

NaClDensityDataAnalysisRegression.xlsx

Multilinear regression using Data Analysis Regression tool

Data Analysis	? ×
Analysis Tools	ОК
Histogram	
Moving Average	Cancel
Random Number Generation	
Rank and Percentile	Hale
Regression	<u>H</u> elp
Sampling	
t-Test: Paired Two Sample for Means	
t-Test: Two-Sample Assuming Equal Variances	
t-Test: Two-Sample Assuming Unequal Variances	
z-Test: Two Sample for Means	

Regression		? ×
Input Input <u>Y</u> Range: Input <u>X</u> Range: <u>Uabels</u> Confidence Level: 95	SDS2:SDS38	OK Cancel <u>H</u> elp
Output options Qutput Range: New Worksheet <u>Ply:</u> New <u>Workbook</u> Residuals <u>Residuals</u> Standardized Residuals Normal Probability <u>Normal Probability</u> <u>Normal Probability</u>	▲	

Multilinear regression using Data Analysis Regression tool

SUMMARY OUTPUT						
Regression Si	tatistics					
Multiple R	0.9999866					
R Square	99.99731%					
Adjusted R Square	99.99687%					
Standard Error	3.919E-04					
Observations	36					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	Coefficients 1.001E+00		t Stat 4.580E+03	P-value 0.000%	Lower 95% 1.001E+00	Upper 95% 1.002E+00
Intercept		Error				
	1.001E+00	Error 2.186E-04	4.580E+03	0.000%	1.001E+00	1.002E+00
w	1.001E+00 7.274E-03	Error 2.186E-04 3.184E-05	4.580E+03 2.285E+02	0.000% 0.000%	1.001E+00 7.209E-03	1.002E+00 7.339E-03
w T	1.001E+00 7.274E-03 -9.780E-05	Error 2.186E-04 3.184E-05 1.712E-05	4.580E+03 2.285E+02 -5.713E+00	0.000% 0.000% 0.000%	1.001E+00 7.209E-03 -1.328E-04	1.002E+00 7.339E-03 -6.284E-05
w T w2	1.001E+00 7.274E-03 -9.780E-05 2.496E-05	Error 2.186E-04 3.184E-05 1.712E-05 1.122E-06	4.580E+03 2.285E+02 -5.713E+00 2.225E+01	0.000% 0.000% 0.000% 0.000%	1.001E+00 7.209E-03 -1.328E-04 2.266E-05	1.002E+00 7.339E-03 -6.284E-05 2.725E-05

 $\rho = 1.001 + 0.007274w - 9.780 \times 10^{-5}T$

 $+2.496 \times 10^{-5} w^2 - 2.997 \times 10^{-6} T^2 - 1.254 \times 10^{-5} wT$

Multilinear regression using vector-matrix calculations

	В	С	D			
2	wt%	degC	dens	-	2	
3	1	0	1.00747		3	
4	2	0	1.01509		4	
5	4	0	1.03038		5	
6	8	0	1.06121		6 7	-
7	12	0	1.09244		8	
8	16	0	1.12419		9	-
9	20	0	1.15663		10	
10	24	0	1.18999		11	
11	26	0	1.20709		12	
12	1	10	1.00707		10	
13	2	10	1 01442			
		\bullet			27	
29	26	25	1.19443		28	
30	1	40	0.99908		29	
31	2	40	1.00593		30	
32	4	40	1.01977		31	
33	8	40	1.04798		32	<u> </u>
34	12	40	1.07699		33	<u> </u>
35	16	40	1.10688		34 35	<u> </u>
36	20	40	1.13774		36	<u> </u>
37	24	40	1.16971		37	-
38	26	40	1.18614		38	
20						-

	F	G	Н	I	J	K
2			X ma	atrix		
3	1	1	0	1	0	0
4	1	2	0	4	0	0
5	1	4	0	16	0	0
6	1	8	0	64	0	0
7	1	12	0	144	0	0
8	1	16	0	256	0	0
9	1	20	0	400	0	0
10	1	24	0	576	0	0
11	1	26	0	676	0	0
12	1	1	10	1	100	10
10			40		400	00
27	1	20	25	400	625	500
28	1	24	25	576	625	600
29	1	26	25	676	625	650
30	1	1	40	1	1600	40
31	1	2	40	4	1600	80
32	1	4	40	16	1600	160
33	1	8	40	64	1600	320
34	1	12	40	144	1600	480
35	1	16	40	256	1600	640
36	1	20	40	400	1600	800
37	1	24	40	576	1600	960
38	1	26	40	676	1600	1040

Multilinear regression using vector-matrix calculations

NaClDensityRegressionFinished.xlsx

Multilinear regression using vector-matrix calculations

Very close to perfect agreement

Model appears to be adequate

Nonlinear regression

Model: $y = f(\mathbf{x}, \beta)$ Dataset: $\{y_i, x_{1i}, ..., x_{mi}, i = 1, ..., n\}$

$$\mathbf{f}(\mathbf{x},\boldsymbol{\beta}) = \begin{bmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_n) \end{bmatrix}$$

$$\mathbf{e} = \mathbf{y} - \mathbf{f} \left(\mathbf{x}, \hat{\boldsymbol{\beta}} \right)$$
 $\frac{\min}{\hat{\boldsymbol{\beta}}} \mathbf{e}^T \mathbf{e}$ using an optimization routine

Example: fitting the Antoine equation to vapor pressure data

AntoineStarter.xlsx

95%(wt) St	essure of ulfuric Acid Solution	$\log_{10} P_V = A - \frac{B}{C+T}$					
Temperature	Vapor	115	0.59	1	205	45.3	
(degC)	Pressure (torr)	120	0.788		210	55	
35	0.0015	125	1.07		215	66.9	
40	0.00235	130	1.42		220	79.8	
45	0.0037	135	1.87		225	95.5	
50	0.0058	140	2.4		230	115	
55	0.00877	145	3.11		235	137	
60	0.0133	150	4.02		240	164	
65	0.0196	155	5.13		245	193	
70	0.0288	160	6.47		250	229	
75	0.0415	165	8.39		255	268	
80	0.0606	170	10.3		260	314	
85	0.0879	175	12.9		265	363	
90	0.123	180	15.9		270	430	
95	0.172	185	20.2		275	500	
100	0.237	190	24.8		280	580	
105	0.321	195	30.7		285	682	
110	0.437	200	36.7		290	790	

	А	В
2	Temperature (degC)	Vapor Pressure (torr)
3	35	0.0015
4	40	0.00235
5	45	0.0037
6	50	0.0058
7	55	0.00877
8	60	0.0133
9	65	0.0196
10	70	0 0288
	\bullet	\bullet
41	200	200
48	260	314
49	265	363
50	270	430
51	275	500
52	280	580
53	285	682
54	290	790

	A B		С
2	Temperature (degC)	Vapor Pressure (torr)	Log10 Vapor Pressure
3	35	0.0015	-2.824
4	40	0.00235	-2.629
5	45	0.0037	-2.432
6	50	0.0058	-2.237
7	55	0.00877	-2.057
8	60	0.0133	-1.876
9	65	0.0196	-1.708
10	70	0 0288	-1 541
	•	•	•
40		514	2.431
49	265	363	2.560
50	270	430	2.633
51	275	500	2.699
52	280	580	2.763
53	285	682	2.834
54	290	790	2.898

	А	В	С	D	E	F	G	Н	
2	Temperature (degC)	Vapor Pressure (torr)	Log10 Vapor Pressure	Predicted Log10 VP	Error				
3	35	0.0015	-2.824	2.982	-5.806		Α	10	
4	40	0.00235	-2.629	3.103	-5.732		В	2000	
5	45	0.0037	-2.432	3.220	-5.652		Cc	250	
6	50	0.0058	-2.237	3.333	-5.570				SSE =SUMSQ(E3:E54)
7	55	0.00877	-2.057	3.443	-5.500		SSE	1029.227	
8	60	0.0133	-1.876	3.548	-5.425				

Curve-FittingNonlinear regressionAntoineFinished.xlsxExample: fitting the Antoine equation to vapor pressure data

Solver Parameters										
	Se <u>t</u> Objective	SSE								
	то: С) <u>M</u> ax	• Mi <u>n</u>	O <u>V</u> alue Of:						
	By Changing Variable Cells:									
	A,B,Cc									
0	otions			?						
	All Methods GR	G Nonline	ar Evolutionary	1						
	Convergence:			0.000001						
		Α	9.789							
		В	3887.5							
		Cc	273.19							
		SSE	0.0010	-						
		UUL	0.0010							

Curve coincides with data

Example: fitting the Antoine equation to vapor pressure data

No apparent pattern. Model is adequate.

Reference:

Spreadsheet Problem Solving and Programming for Engineers and Scientists,

David E. Clough and Steven C. Chapra, CRC Press - Taylor & Francis Group, 2024.

What's next?

Excel Bootcamps 1, 2, 3 and 4

- ✓ 1: Getting up to speed with Excel
- ✓ 2: Introducing VBA
- ✓ 3: Learning to use Excel to solve typical problem scenarios
- 4: Detailed modeling of packed-bed and plug-flow reactors

