Excel Bootcamps 1, 2, 3 and 4

- ✓ 1: Getting up to speed with Excel
- ✓ 2: Introducing VBA
- ✓ 3: Learning to use Excel to solve typical problem scenarios
- 4: Detailed modeling of packed-bed and plug-flow reactors

Bootcamp 4 Outline

- Adiabatic, Packed-Bed, Plug-Flow Reactor
 Ammonia Synthesis
- Tubular Reactor with Counter-current Heat Exchange
 - \circ Acetone Cracking

Reaction kinetics for main reaction $\frac{1}{2}N_2 + \frac{3}{2}H_2 \Leftrightarrow NH_3$

Forward reaction: $r_f = k_f \cdot p_{N_2}^{1/2} \cdot p_{H_2}^{3/2}$

$$k_f = k_{0f} \cdot e^{-\frac{E_f}{R \cdot T}}$$
 $k_{0f} = 10,000 \frac{kmol}{m^3 s} \cdot \frac{1}{atm^2}$ $E_f = 91,000 \frac{kJ}{kmol}$

Reverse reaction: $r_r = k_r \cdot p_{NH_3}$

$$k_{r} = k_{0r} \cdot e^{-\frac{E_{r}}{R \cdot T}} \qquad k_{0r} = 1.3 \times 10^{10} \ \frac{kmol}{m^{3}s} \cdot \frac{1}{atm} \qquad E_{r} = 141,000 \ \frac{kJ}{kmol}$$

Differential Mole Balance on N_2

$$\frac{d\left[FlowN_{2}\right]}{dV} = \left(-r_{f} + r_{r}\right) \cdot \varepsilon$$

Note: $dV = A_r \cdot dz$ $A_r = \pi \frac{D_r^2}{4}$ $V_r = A_r \cdot L_r$ Stoichiometric Balances on H_2 and NH_3

$$FlowH_2 = FeedH_2 - 3 \cdot (FeedN_2 - FlowN_2)$$

3

$$FlowNH_3 = 2 \cdot (FeedN_2 - FlowN_2)$$

dV is differential volume of empty reactor ε is the void fraction of the packed bed

 $H_i(1)$

Energy Balance

pressure effect on enthalpy

4

$$\frac{d}{dV} \left(\sum_{i} Flow_{i} \cdot H_{i}(T) \right) = 0$$

with constant heat capacity approximation

$$\frac{dT}{dV} \approx \frac{\left(r_{f} - r_{r}\right) \cdot \left(-\Delta H_{rxn}\left(T, P\right)\right) \cdot \varepsilon}{\left(\sum_{i} Flow_{i} \cdot C_{Pi}\right)}$$

$$T,P) = \int_{T_{ref}}^{T} C_{Pi}(T) dT + \int_{P_{ref}}^{P} \left[V - T \left(\frac{\partial V}{\partial T} \right)_{P} \right] dP + H_{fi}$$
$$\int_{T_{ref}}^{T} C_{Pi}(T) dT = \overline{C}_{Pi}(T) \cdot \left(T - T_{ref} \right)$$
$$\int_{P_{ref}}^{P} \left[V - T \left(\frac{\partial V}{\partial T} \right)_{P} \right] dP =$$

from eqn of state, analytically, or from P-V-T data. or using the Generalized Pitzer Correlation

Pressure Drop – the Ergun equation for packed beds

$$\left[\frac{\left(P_{0}-P_{L}\right)\cdot\rho}{G_{0}^{2}}\right]\cdot\left[\frac{D_{P}}{L}\right]\cdot\left[\frac{\varepsilon^{3}}{1-\varepsilon}\right]=150\cdot\left[\frac{1-\varepsilon}{D_{P}\cdot G_{0}/\mu}+\frac{7}{4}\right]$$

G₀: mass flow rate per unit cross-sectional area of empty bed -- constant with V

Differential form:

$$\frac{dP}{dV} = \frac{1}{A_r} \cdot 150 \cdot \left[\frac{1-\varepsilon}{D_P \cdot G_0/\mu} + \frac{7}{4}\right] \cdot \left[\frac{1-\varepsilon}{\varepsilon^3}\right] \cdot \left[\frac{G_0^2}{\rho \cdot D_P}\right]$$

written in terms of dimensionless groups

- P_0 : upstream pressure
- P_L : downstream pressure at L
- ho: fluid density
- G_0 : mass flux
- D_P : effective particle diameter
- \mathcal{E} : packing void fraction
- μ : fluid viscosity

Pressure Drop – the Ergun equation for packed beds

Fluid Density

$$\rho = \frac{\overline{MW}}{\tilde{V}} \qquad \overline{MW} : avg \ molecular \ weight, \ \frac{kg}{kmol} \qquad \tilde{V} : specific \ volume, \ \frac{m^3}{kmol}$$

 \tilde{V} from Peng-Robinson Equation of State

$$P = \frac{RT}{\tilde{V} - b_m} - \frac{a_m}{\tilde{V}(\tilde{V} + b_m) + b_m(\tilde{V} - b_m)}$$

Solve nonlinear, cubic equation for \tilde{V}

 a_m, b_m : mixture coefficients Ideal gas law approximation:

$$\rho = \frac{\overline{MW \cdot P}}{RT}$$

Peng-Robinson EOS Mixture Coefficients

Coefficients for individual components

Units: K, kPa, kmol, kJ, m³

 $a_{i} = 0.45724 \frac{R^{2} T_{c}^{2}}{P_{c}} \left(1 + m_{i} \left(1 - \sqrt{\frac{T}{T_{c}}} \right) \right)^{2} \qquad m_{i} = 0.37464 + 1.54226 \omega_{i} - 0.26992 \omega_{i}^{2} \\ k_{ij} : \text{binary interactor factors}$

 ω_i : acentric factor for component i

x: mole fractions

Mixture coefficients

 b_{r}

 $b_i = 0.07780 \frac{RT_c}{P_c}$

$$\mathbf{q} = \sqrt{\mathbf{a} \cdot \mathbf{a}'} \otimes (1 - \mathbf{K}) = \begin{bmatrix} 0 & k_{12}a_1a_2 & \cdots & k_{1n}a_1a_n \\ k_{12}a_1a_2 & 0 & k_{13}a_2a_3 & \vdots \\ \vdots & \vdots & \ddots & k_{n-1,n}a_{n-1}a_n \\ k_{1n}a_1a_n & \cdots & k_{n-1,n}a_{n-1}a_n & 0 \end{bmatrix} \qquad a_m = \mathbf{x}' \cdot \mathbf{Q} \cdot \mathbf{x}$$

$$a_m = \mathbf{x}' \cdot \mathbf{Q} \cdot \mathbf{x}$$

Ar	nmonia P	PFR Simula	ation			Rgas	8.314	kJ/kmol/K					
Siı	nplified	Model								ļ	Ammo	niaSim	ulationSimplifiedModel.xlsm
				Feed C	onditions					Kin	etics		
	N2	12348	kmol/h		Pressure	e 150	atm		Forward				
	H2	37044			Temperature	e 270	degC		k0f	1.00E+04	kmol/m3	/s/atm^2	
	Ar	12391			Heat of Reaction	-107816	kJ/kmol			3.60E+07	kmol/m3	/h/atm^2	
	CH4	5652							Ef	9.10E+04	kJ/kmol		
									Reverse				
	Void	d Fraction	0.4						k0r	1.30E+10	kmol/m3	/s/atm	
	Particle	Diameter	1.00E-03	m						4.68E+13	kmol/m3	/h/atm	
	Reactor	Diameter	3	m	React	orX-sect Area	7.069	m2	Er	1.41E+05	kJ/kmol		
	React	or Length	1	m	Rea	actor Volume	7.069	m3					
											1		

from Hysys	; molar enthalp	bies	Heat Capacit	ties at Tavg	Heat Capacity -	coefficients f	or kJ/mol/K	Fit of Hysys pro	perties at 150 a	atm
Heat o	f Reaction		Tavg	350		а	b	С	d	e
aa	-1.931E+05		N2	31.98	N2	4.04E+01	-3.53E+01	4.69E+01	-1.94E+01	0.00E+00
bb	4.840E+05		H2	29.91	H2	2.88E+01	1.86E+00	0.00E+00	0.00E+00	0.00E+00
СС	-9.944E+05		NH3	54.65	NH3	1.09E+03	-5.69E+03	1.18E+04	-1.09E+04	3.80E+03
dd	8.805E+05		Ar	22.09	Ar	3.68E+01	-5.30E+01	6.40E+01	-2.70E+01	0.00E+00
ee	-2.908E+05		CH4	56.05	CH4	2.47E+01	5.03E+01	0.00E+00	0.00E+00	0.00E+00

													Critical	Critical
													Temperature	Pressure
	Pitzer Correlation for Pressure Correction of Heat of Reaction						Inte	eraction Ma	atrix				к	kPa
		Tc (K)	Pc (atm)	Pc (kPa)	Ω			N2	H2	NH3	Ar	CH4	126.2	3394
	NH3	405.6	112.5	11399	0.25		N2	0	-0.036	0.222	0	0.036	33.19	1297
	N2	126.2	33.5	3394.4	0.04		H2	-0.036	0	0	0	0.202	405.65	11277
	H2	33.2	12.8	1297.0	0.00	1	NH3	0.222	0	0	0	0	150.86	4870
							Ar	0	0	0	0	0.023	190.564	4641
	Pitzer Acentric	actor				(CH4	0.036	0.202	0	0.023	0		
N2	0.039													
H2	-0.216													
NH3	0.25													
Ar	0.001													
CH4	0.011													

		Mo	olar Flow Ra	ates - kmol	/h					Part	ial Pressu	ure - atm			n Rates - /m3/h		Energy	Balance
Volume (m3)	N2	H2	NH3	Ar	CH4	Total	Temp- erature (degC)	N2	H2	NH3	Ar	CH4	Forward	Reverse	dFN2/dV	Heat of Reaction (kJ/kmol)	dT/dV	Conversion (N2 Basis)
0.0000	12348.0	37044	0	12391	5652	67435	270.0	27.466	82.399	0.000	27.562	12.572	249.931	0.000	-99.972	-114646	5.475E+00	0.0%
0.0010	12347.9	37044	0.20	12391	5652	67435	270.0	27.466	82.399	0.000	27.562	12.572	249.979	0.001	-99.991	-114646	5.476E+00	0.0%
0.0020	12347.8	37043	0.40	12391	5652	67435	270.0	27.466	82.399	0.001	27.562	12.572	250.027	0.001	-100.010	-114646	5.477E+00	0.0%
0.0030	12347.7	37043	0.60	12391	5652	67434	270.0	27.466	82.398	0.001	27.562	12.572	250.075	0.002	-100.029	-114646	5.478E+00	0.0%
0.0040	12347.6	37043	0.80	12391	5652	67434	270.0	27.466	82.398	0.002	27.562	12.572	250.123	0.002	-100.048	-114646	5.479E+00	0.0%
0.0050	400475	07040	4.00	40004		C7101	070.0	07.466	00.007	0.000	07.560	40.570	050.470	0.000	400.000		E 400E 00	0.001

•	•		

•

7.0030	5050.0	20732	3354.02	12351	2002	02040	410.2	20.000	05.555	10.044	23.333	10.000	10044.700	10002.020	°4.702	-110240	2.7351-01	21.0/0
7.0640	9650.6	28952	5394.83	12391	5652	62040	418.2	23.333	69.999	13.044	29.959	13.665	13544.783	13532.486	-4.919	-113946	2.721E-01	21.8%
7.0650	9650.6	28952	5394.84	12391	5652	62040	418.2	23.333	69.999	13.044	29.959	13.665	13544.858	13532.644	-4.886	-113946	2.703E-01	21.8%
7.0660	9650.6	28952	5394.85	12391	5652	62040	418.2	23.333	69.999	13.044	29.959	13.665	13544.933	13532.800	-4.853	-113946	2.685E-01	21.8%
7.0670	9650.6	28952	5394.86	12391	5652	62040	418.2	23.333	69.999	13.044	29.959	13.665	13545.007	13532.956	-4.820	-113946	2.666E-01	21.8%
7.0680	9650.6	28952	5394.87	12391	5652	62040	418.2	23.333	69.999	13.044	29.959	13.665	13545.080	13533.110	-4.788	-113946	2.649E-01	21.8%
7.0690	9650.6	28952	5394.88	12391	5652	62040	418.2	23.333	69.999	13.044	29.959	13.665	13545.153	13533.263	-4.756	-113946	2.631E-01	21.8%

Heat capacity function	Function HtCap(component As String, T) Dim a, b, c, d, e, Tk, Tk1 a = Application.WorksheetFunction.VLookup(component, Range("HtCapTable"), 2, False) b = Application.WorksheetFunction.VLookup(component, Range("HtCapTable"), 3, False) c = Application.WorksheetFunction.VLookup(component, Range("HtCapTable"), 4, False) d = Application.WorksheetFunction.VLookup(component, Range("HtCapTable"), 5, False) e = Application.WorksheetFunction.VLookup(component, Range("HtCapTable"), 6, False) rk = T + 273.15 Tk1 = Tk / 1000 HtCap = a + b * Tk1 + c * Tk1 ^ 2 + d * Tk1 ^ 3 + e * Tk1 ^ 4 End Function
Heat of reaction temperature-based function	Function HtRxn(T) Dim a, b, c, d, e, Tk1 a = Range("aa") b = Range("bb") c = Range("cc") d = Range("dd") e = Range("ee") Tk1 = (T + 273.15) / 1000 HtRxn = a + b * Tk1 + c * Tk1 ^ 2 + d * Tk1 ^ 3 + e * Tk1 ^ 4 End Function

Ammonia Synthesis – Simplified Model – Spreadsheet Solution

Heat of reaction temperature-	TcNH3 = Application.WorksheetFunction.VLookup("NH3", Range("PitzerTable"), 2, False) TcN2 = Application.WorksheetFunction.VLookup("N2", Range("PitzerTable"), 2, False) TcH2 = Application.WorksheetFunction.VLookup("H2", Range("PitzerTable"), 2, False) PcNH3 = Application.WorksheetFunction.VLookup("NH3", Range("PitzerTable"), 4, False) PcN2 = Application.WorksheetFunction.VLookup("N2", Range("PitzerTable"), 4, False) PcH2 = Application.WorksheetFunction.VLookup("H2", Range("PitzerTable"), 4, False) OmegaNH3 = Application.WorksheetFunction.VLookup("H2", Range("PitzerTable"), 4, False) OmegaN2 = Application.WorksheetFunction.VLookup("NH3", Range("PitzerTable"), 5, False) OmegaH2 = Application.WorksheetFunction.VLookup("N2", Range("PitzerTable"), 5, False) TrNH3 = Tk / TcNH3 TrN2 = Tk / TcN2 TrH2 = Tk / TcH2	
and pressure-based function	$ \begin{array}{l} \text{B0}_{\text{NH3}} = 0.1445 - 0.33 \ / \ \text{TrNH3} - 0.1385 \ / \ \text{TrNH3} ^2 - 0.0121 \ / \ \text{TrNH3} ^3 \\ \text{B0}_{\text{N2}} = 0.1445 - 0.33 \ / \ \text{TrN2} - 0.1385 \ / \ \text{TrN2} ^2 - 0.0121 \ / \ \text{TrN2} ^3 \\ \text{B0}_{\text{H2}} = 0.1445 - 0.33 \ / \ \text{TrN4} - 0.1385 \ / \ \text{TrN2} ^2 - 0.0071 \ / \ \text{TrN2} ^3 \\ \text{B1}_{\text{NH3}} = 0.073 + 0.46 \ / \ \text{TrNH3} - 0.5 \ / \ \text{TrNH3} ^2 - 0.097 \ / \ \text{TrN3} ^3 - 0.0073 \ / \ \text{TrN43} ^8 \\ \text{B1}_{\text{N2}} = 0.073 + 0.46 \ / \ \text{TrN2} - 0.5 \ / \ \text{TrN2} ^2 - 0.097 \ / \ \text{TrN2} ^3 - 0.0073 \ / \ \text{TrN2} ^8 \\ \text{B1}_{\text{H2}} = 0.073 + 0.46 \ / \ \text{TrN2} - 0.5 \ / \ \text{TrN2} ^2 - 0.097 \ / \ \text{TrN2} ^3 - 0.0073 \ / \ \text{TrN2} ^8 \\ \text{B1}_{\text{H2}} = 0.073 + 0.46 \ / \ \text{TrN2} - 0.5 \ / \ \text{TrN2} ^2 - 0.097 \ / \ \text{TrN2} ^3 - 0.0073 \ / \ \text{TrN2} ^8 \\ \text{B1}_{\text{H2}} = 0.073 + 0.46 \ / \ \text{TrN2} - 0.5 \ / \ \text{TrN2} ^2 - 0.097 \ / \ \text{TrN2} ^3 - 0.0073 \ / \ \text{TrN2} ^8 \\ \text{B1}_{\text{H2}} = 0.073 + 0.46 \ / \ \text{TrN2} - 0.5 \ / \ \text{TrN2} ^2 - 0.097 \ / \ \text{TrN2} ^3 - 0.0073 \ / \ \text{TrN2} ^8 \\ \text{B1}_{\text{H2}} = 0.33 \ / \ \text{TrN3} ^2 + 0.277 \ / \ \text{TrN2} ^3 + 0.0363 \ / \ \text{TrN3} ^4 \\ \text{dB0}_{\text{H2}} = 0.33 \ / \ \text{TrN2} ^2 + 0.277 \ / \ \text{TrN2} ^3 + 0.0363 \ / \ \text{TrN2} ^4 \\ \text{dB1}_{\text{NH3}} = -0.46 \ / \ \text{TrN3} ^2 + 1 \ / \ \text{TrN3} ^3 + 0.291 \ / \ \text{TrN3} ^4 + 0.0584 \ / \ \text{TrN43} ^9 \\ \text{dB1}_{\text{N2}} = -0.46 \ / \ \text{TrN2} ^2 + 1 \ / \ \text{TrN3} ^3 + 0.291 \ / \ \text{TrN2} ^4 + 0.0584 \ / \ \text{TrN3} ^9 \\ \text{dB1}_{\text{H2}} = -0.46 \ / \ \text{TrN2} ^2 + 1 \ / \ \text{TrN2} ^3 + 0.291 \ / \ \text{TrN2} ^4 + 0.0584 \ / \ \text{TrN3} ^9 \\ \text{dB1}_{\text{H2}} = -0.46 \ / \ \text{TrH2} ^2 + 1 \ / \ \text{TrM3} ^3 + 0.291 \ / \ \text{TrN2} ^4 + 0.0584 \ / \ \text{TrN3} ^3 \ (\text{dB1}_{\text{NH3} - \text{B1}_{\text{NH3}} - \text{B1}_{\text{NH3}} + \text{D1}_{\text{NH3} + \text{D1}_{\text{NH3}} + \text{D1}_{\text{NH3} + \text{D1}_{\text{NH3}} + \text{D1}_{\text$	rNH3))

Ammonia I	PFR Simul	ation			Rgas	8.314	kJ/kmol/K				
					Rgas2	0.082057	atm*m3/kn	nol/K			
			Feed Condit	ions					Kine	etics	
N2	12348	kmol/h		Pressure	150	atm		Forward			
H2	37044		Т	emperature	270	degC		k0f	1.00E+04	kmol/m3/	/s/atm^2
Ar	12391		Heat	of Reaction	-107816	kJ/kmol			3.60E+07	kmol/m3/	/h/atm^2
CH4	5652							Ef	9.10E+04	kJ/kmol	
								Reverse			
Voi	d Fraction	0.4						k0r	1.30E+10	kmol/m3/	/s/atm
Particle	Diameter	1.00E-03	m						4.68E+13	kmol/m3/	/h/atm
Reactor	Diameter	3	m	Reactor	rX-sect Area	7.069	m2	Er	1.41E+05	kJ/kmol	
React	or Length	1	m	Read	ctor Volume	7.069	m3				

AmmoniaSimulationFullModel.xlsm

from Hys	ys molar enthalp	oies				Fe	ed	Heat Capac	ity - c	oefficients for	r kJ/mol/K	Fit of Hysys pr	operties at 150	atm
Heat	of Reaction			Molecular	Weights	Mass Flo	ow Rates			а	b	с	d	e
aa	-1.931E+05			N2	28.0134	345909.5	kg/h		N2	4.04E+01	-3.53E+01	4.69E+01	-1.94E+01	0.00E+00
bb	4.840E+05			H2	2.016	74680.7			H2	2.88E+01	1.86E+00	0.00E+00	0.00E+00	0.00E+00
C	-9.944E+05			NH3	17.02	0		1	NH3	1.09E+03	-5.69E+03	1.18E+04	-1.09E+04	3.80E+03
do	8.805E+05			Ar	39.948	494995.7			Ar	3.68E+01	-5.30E+01	6.40E+01	-2.70E+01	0.00E+00
ee	-2.908E+05			CH4	16.043	90675.04			CH4	2.47E+01	5.03E+01	0.00E+00	0.00E+00	0.00E+00
						1006261								
Kine	ematic viscosity	0.5075	cSt		Mass Flux	39.54	kg/s/m2							
		0.005075	St								Final	Temperature	415.7	
		5.075E-07	m2/s								Fina	al Comversion	21.6%	
	stoke	1.00E-04	m2/s											

		itzer Correlation for Pressure Correction of Heat of Reactic											Critical	Critical	
														Pressure	
	Pitzer Correlat	ion for Pre	essure Correct	ion of Heat	of Reactio	on	Binary Inte	eraction Ma	atrix				Temperature K	kPa	
		Tc (K) Pc (atm) Pc (kPa) Ω NH2 405.6 112.5 11209 0.25						N2	H2	NH3	Ar	CH4	126.2	3394	
	NH3						N2	0	-0.036	0.222	0	0.036	33.19	1297	
	N2				H2	-0.036	0	0	0	0.202	405.65	11277			
	H2				NH3	0.222	0	0	0	0	150.86	4870			
							Ar	0	0	0	0	0.023	190.564	4641	
	Pitzer Acentric	Factor					CH4	0.036	0.202	0	0.023	0			
N2	0.039														
H2	-0.216														
NH3	0.25														
Ar	0.001														h
CH4	0.011														
0	0.011														

		Mo	olar Flow Rate	es - <mark>kgmol/</mark> h						Part	ial Pressur	e - atm	
Volume (m3)	N2	H2	NH3	Ar	CH4	Total	Pressure (atm)	Temp- erature (degC)	N2	H2	NH3	Ar	CH4
0.0000	12348.0	37044	0	12391	5652	67435	150	270.0	27.466	82.399	0.000	27.562	12.572
0.0010	12347.9	37044	0.20	12391	5652	67435	150.00	270.0	27.466	82.399	0.000	27.562	12.572
0.0020	12347.8	37043	0.40	12391	5652	67435	150.00	270.0	27.466	82.398	0.001	27.562	12.572
0.0030	12347.7	37043	0.60	12391	5652	67434	150.00	270.0	27.466	82.397	0.001	27.562	12.572
0.0040	12347.6	37043	0.80	12391	5652	67434	150.00	270.0	27.465	82.396	0.002	27.562	12.572
0.0050	12347.5	37042	1.00	12391	5652	67434	150.00	270.0	27.465	82.395	0.002	27.562	12.572
0.0000	10047.4	27042	1 00	10001	5650	C7434	150.00	270.0	07.405	02.204	0.000	27.562	10 570

Reaction Rates - kmol/m3/h		N2 derivative		I	Ergun Equat	tion for Pressu	ire Drop						
Forward	Reverse	dFN2/dV	MW avg	Density (kg/m3)	Viscosity (Pa*s)	dP/dz (Pa/m)	dP/dV (Pa/m3)	dP/dV (atm/m3)	Heat of Reaction (kJ/kmol)	dH/d∨	н	FindT	Conversion (N2 Basis)
249.931	0.000	-99.972	14.922	48.124	2.44E-05	-550016	-77811	-0.768	-114646	1.1461E+07	5.5929E+08	270.00	0.0%
249.976	0.001	-99.990	14.922	48.124	2.44E-05	-550022	-77812	-0.768	-114646	1.1463E+07	5.5930E+08	270.01	0.0%
250.021	0.001	-100.008	14.922	48.123	2.44E-05	-550028	-77813	-0.768	-114646	1.1465E+07	5.5931E+08	270.01	0.0%
250.066	0.002	-100.026	14.922	48.123	2.44E-05	-550034	-77814	-0.768	-114646	1.1468E+07	5.5932E+08	270.02	0.0%
250.111	0.002	-100.043	14.922	48.122	2.44E-05	-550040	-77815	-0.768	-114646	1.1470E+07	5.5933E+08	270.02	0.0%

Functions FindT and fH to solve for temperature given enthalpy

```
Function FindT(H, Tg, FlowN2, FlowH2, FlowNH3, FlowAr, FlowCH4)
Dim Ta1, tol, TaNew
tol = 0.0000001
Do
  Ta1 = Ta + 0.1
  TgNew = Tg - 0.1 * fH(H, Tg, FlowN2, FlowH2, FlowNH3, FlowAr, FlowCH4) /
     (fH(H, Tg1, FlowN2, FlowH2, FlowNH3, FlowAr, FlowCH4) - fH(H, Tg, FlowN2, FlowH2, FlowNH3, FlowAr, FlowCH4))
  If Abs((TgNew - Tg) / TgNew) < tol Then Exit Do
  Tg = TgNew
Loop
FindT = TgNew
End Function
Function fH(H, T, FlowN2, FlowH2, FlowNH3, FlowAr, FlowCH4)
fH = H - (FlowN2 * HtCap("N2", T) + FlowH2 * HtCap("H2", T) + FlowNH3 * HtCap("NH3", T) +
  FlowAr * HtCap("Ar", T) + FlowCH4 * HtCap("CH4", T)) * T
End Function
```

	' compute mixture coefficients am and bm
Function SpecVol to solve	FT = WorksheetFunction.Sum(F)
	For i = 1 To n
Peng-Robinson equation of state	z(i) = F(i) / FT
	Next i
for the specific volume	For i = 1 To n m(i) = 0.37464 + 1.54226 * w(i) - 0.26992 * w(i) ^ 2
	$a(i) = 0.45724 * Rgas^2 * Tc(i)^2 / Pc(i) * (1 + m(i) * (1 - Sqr(T / Tc(i))))^2$
Option Explicit	b(i) = 0.0788 * Rgas * Tc(i) / Pc(i)
Option Base 1	Next i
Function SpecVol(Tf, Patm, F, w, Tc, Pc, K)	For i = 1 To n
' find specific volume based on Peng-Robinson equation of state	For j = 1 To n
Dim n As Integer, i As Integer, j As Integer	Q(i, j) = Sqr(a(i) * a(j)) * (1 - K(i, j))
Dim z(), m(), a(), b(), Q(), Rgas, am, bm, V1, V2, Vnew, tol, z1(), FT, T, P	Next j
Rgas = 8.314	Next i
T = Tf + 273.15	For i = 1 To n
P = Patm * 101.325	For $j = 1$ To n
n = F.Count	z1(i) = z1(i) + Q(i, j) * z(j)
ReDim $z(n)$, $m(n)$, $a(n)$, $b(n)$, $Q(n, n)$, $z1(n)$	Next j Next i
	For i = 1 To n
	am = am + z(i) * z1(i)
	Next i
	For i = 1 To n
	bm = bm + z(i) * b(i)
	Next i

```
' now solve the Peng-Robinson equation of state for V
' initial estimate for V from ideal gas law
V1 = Rgas * T / P
tol = 0.000001
Do
  V2 = V1 + 0.001
  Vnew = V1 - 0.001 * PR(V1, T, P, am, bm) / (PR(V2, T, P, am, bm) - PR(V1, T, P, am, bm))
  If Abs((Vnew - V1) / Vnew) < tol Then Exit Do
  V1 = Vnew
Loop
SpecVol = Vnew
End Function
Function PR(V, T, P, a, b)
Dim Rgas
Rgas = 8.314
PR = P - (Rgas * T / (V - b) - a / (V^{2} + 2 * b * V - b^{2}))
End Function
```


Case Study 2 Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene

 $CH_3COCH_3 \Rightarrow CH_2CO + CH_4$

Feed: 7850 kg/hr 7.85 kg/hr per tube 0.135 kmol/hr

Inlet temperature: 1035 K Inlet pressure: 162 kPa (1.6 atm)

Counter-current heat transfer

Air: 90 T/hr

Inlet temperature: 1250 K

adapted from

Fogler, H. Scott, Elements of Chemical Reaction Engineering, 4th Edition, Prentice-Hall, 2006, p. 504.

Reactor: 1000 1" Sch 40 tubes Total volume: 2 m³ Tube ID: 26.7 mm Tube length: 3.57 m

Assume $\Delta P \cong 0$

28

Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene Basic data:

$$r_{A} = -k \cdot C_{A} \quad ln(k) = 42.529 - \frac{34222}{T}$$

$$r_{A} : \text{ reaction rate of acetone, } \frac{kmol}{hr \cdot m^{3}}$$

$$C_{A} : \text{ concentration of acetone, } \frac{kmol}{m^{3}}$$

$$k : \text{ rate parameter, } 1/hr$$

T: temperature, K

Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene Basic data: Heat capacity

Acetone:
$$C_{PA} = 6.8132 + 278.6 \cdot Tk - 156.28 \cdot Tk^2 + 34.76 \cdot Tk^3$$
 $\frac{kJ}{kmol \cdot K}$ $Tk = \frac{T\lfloor K}{1000}$
Ketene: $C_{PK} = 18.909 + 143.56 \cdot Tk - 130.23 \cdot Tk^2 + 66.526 \cdot Tk^3 - 14.112 \cdot Tk^4$
Methane: $C_{PM} = -0.7030 + 108.48 \cdot Tk - 42.522 \cdot Tk^2 + 5.8628 \cdot Tk^3 + 0.67857 \cdot \frac{1}{Tk^2}$
 $\bar{C}_{PA}(T) = \frac{\int_{T_{ref}}^{T} C_{PA}(T) \cdot dT}{T - T_{ref}} = 1000 \cdot \frac{\int_{Tk_{ref}}^{Tk} C_{PA}(tk) \cdot d(tk)}{Tk - Tk_{ref}}$
Heat of reaction
 $\Delta H_{-}(T) = \Delta H_{-}(25^{\circ}C) - \Delta H_{+}(T) + \Delta H_{+}(T) + \Delta H_{+}(T)$

$$\Delta H_{rxn} (25^{\circ}C) = 80,770 \frac{kJ}{kmol}$$

$$\Delta H_{rxn} (T) = \Delta H_{rxn} (25^{\circ}C) - \Delta H_A (T) + \Delta H_K (T) + \Delta H_M (T)$$

$$\Delta H_i (T) = 1000 \cdot \int_{Tk_{ref}}^{Tk} C_{Pi} (tk) d(tk)$$
endothermic

30

Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene Feed concentration:

$$C_{AF} = \frac{n}{V} = \frac{P}{R \cdot T} = \frac{162[kPa]}{8.314\left[\frac{kPa \cdot m^3}{kmol \cdot K}\right] \cdot 1035[K]} = 0.018 \frac{kmol}{m^3}$$

Reactor balances:

$$\begin{aligned} \frac{dF_A}{dV} &= r_A = -k \cdot C_A & C_A = \frac{F_A}{F_T} \cdot C_{AF} \cdot \frac{T_F}{T} \\ F_K &= F_M = F_{AF} - F_A & F_T = F_A + F_K + F_M \\ \frac{d\dot{H}}{dV} &= UA(T_a - T) & \dot{H}_a = F_a \cdot \bar{C}_{Pa}(T) \cdot (T - T_{ref}) \\ \dot{H} &= \dot{H}_A + \dot{H}_K + \dot{H}_M & \text{Note:} \\ \dot{H}_A &= F_A \cdot \left(\bar{C}_{PA}(T) \cdot (T - T_{ref}) + H_{fA}\right) \dots & H_{fa} = 0 \end{aligned}$$

Air anaray halanaa

Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene – full model

Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene Simplification of the enthalpy balance

$$\begin{aligned} \frac{d\dot{H}}{dV} &= UA(T_a - T) \\ \frac{d\dot{H}}{dV} &= \frac{d\sum(F_iH_i)}{dV} = \sum \frac{dF_i}{dV}H_i + \sum F_i \frac{dH_i}{dV} \\ \frac{dF_i}{dV} &= r_i = v_i \cdot (-r_A) \\ \frac{dH_i}{dV} &= C_{P_i} \frac{dT}{dV} \quad assuming \ constant \ heat \ capacity \\ \frac{dH_i}{dV} &= (-r_A)\sum v_iH_i + \frac{dT}{dV}\sum F_iC_{P_i} \\ \sum v_iH_i &= \Delta H_{rx} \quad v_i : stoichiometric \ coefficients \\ \frac{dT}{dV} &= \frac{r_A \cdot \Delta H_{rx} + UA(T_a - T)}{\sum F_iC_{P_i}} \end{aligned}$$

$$\frac{d\dot{H}_a}{d\left(-V\right)} = UA\left(T - T_a\right)$$

assuming constant heat capacity and molar flow rate

$$\frac{dH_a}{dV} = F_a \cdot C_{Pa} \cdot \frac{dT}{dV}$$
$$\frac{dT_a}{dV} = \frac{UA(T_a - T)}{F_a C_{Pa}}$$

Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene - simplified model

Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene

Solution Strategy

Estimate final air temperature at v = 0

Solve model from v = 0 to v = Vr

Determine air temperature at v = Vr from solution

If air temperature at v = Vr meets spec \longrightarrow done!

Adjust final air temperature at v = 0 Excel: use Solver

Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene Simplified Model AcetonePFRSimplifiedModel.xIsm

	А	В	С	D	E	F	G	Н	I	J.	К	L	М	Ν	0
1	Acetone Cracking PFR with Counter-current Heat Exchange			Rgas	8.314	kJ/kgmol/K	NoSteps	200		TAirError	0.0				
2	9/26/2019	9/26/2019 Simplified Model		MWA 58.08		kg/kgmol	dV 1.00E-06			Use Solver to drive this to zero					
3	Reactor Spe	cifications		Heat T	ransfer		MWAir	28.96	kg/kgmol						
4	NoTubes	1000		A	149.8	m2/m3				Air F	eed		Reaction Kinetics		
5	TotalVolume	2	m3	U	400	kJ/m2/hr/K	Aceto	ne Feed		MassFeedAir	88704	kg/hr	lnk0	42.529	
6	VolPerTube	0.002	m3				MassFeedA	7850	kg/hr	FAirM	88.70	kg/hr per tube	k0	2.95E+18	1/hr
7	TubeID	2.67E-02	m3	Feed Co	onditions		FAM	7.85	kg/hr per tube	FAir	3.06	kgmol/hr	E	284522	kJ/kgmol
8	TubeXC	5.60E-04	m2	TF	1035	К	FAF	0.135	kgmol/hr	TAirF	1250	К			
9	TubeLength	3.572	m	PF	162	kPa	CAF	0.0188	kgmol/m3	Tair0	1112.9	K - estimate	Tref	298.15	к
10															
	Reactor	FA	FK	FM	FT	т	TAir	CA	rA	dFA/dV	dT/dV	dTa/dV	Commission		
11	Volume (m3)	(kgmol/hr)	(kgmol/hr)	(kgmol/hr)	(kgmol/hr)	(К)	(К)	(kgmol/m3)	(kgmol/m3/hr)	(kgmol/m3/hr)	(K/m3)	(K/m3)	Conversion		
12	0.000E+00	0.13516	0.00000	0.00000	0.00000	1035.0	1112.9	0.01883	242.68	-242.68	-6.566E+05	4.557E+04	0.00000		
13	1.000E-06	0.13492	0.00024	0.00024	0.13540	1034.3	1112.9	0.01877	236.93	-236.93	-6.343E+05	4.598E+04	0.00180		
14	2.000E-06	0.13468	0.00048	0.00048	0.13564	1033.7	1113.0	0.01872	231.50	-231.50	-6.132E+05	4.638E+04	0.00355		
15	3.000E-06	0.13445	0.00071	0.00071	0.13587	1033.1	1113.0	0.01866	226.36	-226.36	-5.931E+05	4.676E+04	0.00526		
16	4.000E-06	0.13422	0.00094	0.00094	0.13610	1032.5	1113.1	0.01861	221.47	-221.47	-5.740E+05	4.714E+04	0.00694		
47	E 000E 00	0.42400	0.00110	0.00116	0 40000	1021.0	4447.4	0.01050	246.04	246.04	E FEORIOF	4 3505.04	0.00057		
	• •		•		•		•		• •			•	•		
	A	В	C	D	E	F	G	Н	1	J	К	L	М		
2004	1.992E-03	0.00000	0.13516	0.13516	0.27032	1191.9	1249.7	0.00000	0.01	-0.01	1.640E+05	3.385E+04	1.00000		
200	5 1.993E-03	0.00000	0.13516	0.13516	0.27032	1192.0	1249.8	0.00000	0.01	-0.01	1.636E+05	3.377E+04	1.00000		
2006	5 1.994E-03	0.00000	0.13516	0.13516	0.27032	1192.2	1249.8	0.00000	0.00	0.00	1.632E+05	3.370E+04	1.00000		
200	7 1.995E-03	0.00000	0.13516	0.13516	0.27032	1192.4	1249.8	0.00000	0.00	0.00	1.629E+05	3.362E+04	1.00000		
2008	3 1.996E-03	0.00000	0.13516	0.13516	0.27032	1192.5	1249.9	0.00000	0.00	0.00	1.625E+05	3.355E+04	1.00000		
2009	1.997E-03	0.00000	0.13516	0.13516	0.27032		1249.9	0.00000	0.00	0.00	1.621E+05	3.347E+04			
2010	1.998E-03	0.00000	0.13516	0.13516	0.27032		1249.9	0.00000	0.00	0.00	1.618E+05	3.340E+04			
201		0.00000	0.13516	0.13516	0.27032			0.00000	0.00	0.00	1.614E+05				_
2012		0.00000	0.13516	0.13516	0.27032	1193.2	1250.0	0.00000	0.00	0.00	1.610E+05	3.325E+04	1.00000	36	0
2013	3														

		Α	В
		Reactor	FA
Euler method		Volume	(kmol/hr)
for FA	11	(m3)	(KIIIOI/III)
	12	0.000E+00	0.13516
	13	=B12+J12*d\	/

	А	В	С
	Reactor	FA	FK
	Volume	(kmol/hr)	(kmol/hr)
11	(m3)	(kmol/m)	(kmol/nr)
12	0.000E+00	0.13516	0.00000
13	1.000E-06	=FAF-B13	
			T

	В	C	D	
11	FA (kmol/hr)	FK (kmol/hr)	FM (kmol/hr)	
12	0.13516	0.00000	0.00000	ſ
13	0.13492	=FAF-B13		
				ľ

Stoichiometry for FK and FM

dFA/dV

		F	G	Н
		т	TAir	CA
A	11	(K)	(K)	(kmol/m3)
	12	1035.0	1112.9	0.01883
	13	1034.3	=B13/E13*	CAF*TF/F13
				T

rA

	F	G	Н	I.
11	Т (К)	TAir (K)	CA (kmol/m3)	rA (kmol/m3/hr)
12	1035.0	1112.9	0.01883	242.68
13	1034.3	1112.9	=k0*EXP(-E/F	Rgas /F13)*H13
	4000 7	4440.0	0.04070	004 50

	I.	J	
11	rA (kmol/m3/hr)	dFA/dV (kmol/m3/hr)	
12	242.68	-242.68	
13	236.93	=-113	
1.4	221 50	221 50	

		E	F			E	F	G	Н	1	J	
Euler method for T	11	FT (kmol/hr)	т (К)	dT/dV	11	FT (kmol/hr)	т (К)	TAir (K)	CA (kmol/m	rA 13) <mark>(</mark> kmol/m3	dFA/d /hr) (kmol/m3	
	12	0.00000	1035.0	=	12	0.00000	1035.0	1112.9	0.018	83 242	2.68 -242	.68 -6
	13	=F12+K12*		-	13	0.13540	= (113*(-Ht	Rxn(F13))+	J*A*(G13-I	F13) <mark>)/(B13*Cp_</mark>	A+C13*Cp_K+D1	3*Cp_M)
			•	-		'					,	
		F	G			1						
		т	TAir			G TAir	СА		rA	dFA/dV	K dT/dV	dTa/dV
Euler method for TAir	11	(K)	(K)	dTAir/dV	1	(К)	(kmol/m			(kmol/m3/hr)	(K/m3)	(K/m3)
	12	1035.0	1112.9]	1	1112.9	0.018	83	242.68	-242.68	-6.566E+05	4.557E+04
	13	=G12+L12*	dV	_	1	1112.9	0.018	377	236.93	=-U*A*(F13-G1	3)/FAir/Cp_Air	
		4000 7	4440 A T		-				201 CO	004 50	C 4005-05	t contract I

Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene Simplified Model – VBA code

Option Explicit Function CpA(T) 'heat capacity of acetone gas, kJ/kgmol/K 'from Felder & Rousseau, 3rd Ed., p. 635 Dim Tk, Cp Tk = T / 1000	Function HtRxn(T) Dim Hx0, Tk, Tk0, Ha, HK, HM Hx0 = 80770# 'kJ/kgmol Tk = T / 1000 Tk0 = (25 + 273.15) / 1000 'acetone Ha = (0.0068132 * Tk + 0.2786 / 2 * Tk ^ 2 - 0.15628 / 3 * Tk ^ 3 + 0.03476 / 4 * Tk ^ 4 - (0.0068132 * Tk0 + 0.2786 / 2 * Tk0 ^ 2 - 0.15628 / 3 * Tk0 ^ 3 + 0.03476 / 4 * Tk0 ^ 4)) * 1000 'ketene
Cp = 0.0068132 + 0.2786 * Tk - 0.15628 * Tk ^ 2 + 0.03476 * Tk ^ 3 'kJ/mol/K CpA = Cp * 1000 ' kJ/kgmol/K End Function Function CpK(T) 'heat capacity of ketene 'from regression of data from NIST Webbook Dim Tk Tk = T / 1000 CpK = 18.909 + 143.56 * Tk - 130.23 * Tk ^ 2 + 66.526 * Tk ^ 3 - 14.112 * Tk ^ 4	$ \begin{array}{l} HK = 18.909 * Tk + 143.56 / 2 * Tk ^2 - 130.23 / 3 * Tk ^3 + 66.526 / 4 * Tk ^4 - 14.112 / 5 * Tk ^5 _ \\ - (18.909 * Tk0 + 143.56 / 2 * Tk0 ^2 - 130.23 / 3 * Tk0 ^3 + 66.526 / 4 * Tk0 ^4 - 14.112 / 5 * Tk0 ^5) \\ \\ \begin{array}{l} 'methane \\ HM = -0.703028 * Tk + 108.4773 / 2 * Tk ^2 - 42.52157 / 3 * Tk ^3 + 5.862788 / 4 * Tk ^4 - 0.678565 / Tk _ \\ - (-0.703028 * Tk0 + 108.4773 / 2 * Tk0 ^2 - 42.52157 / 3 * Tk0 ^3 + 5.862788 / 4 * Tk0 ^4 - 0.678565 / Tk _ \\ - (-0.703028 * Tk0 + 108.4773 / 2 * Tk0 ^2 - 42.52157 / 3 * Tk0 ^3 + 5.862788 / 4 * Tk0 ^4 - 0.678565 / Tk0) \\ \\ \begin{array}{l} ' \\ HtRxn = Hx0 + (-Ha + HK + HM) * 1000 \\ End Function \end{array} $
End Function Function CpM(T) 'heat capacity of methane 'Shomate equation from NIST Webbook Dim Tk Tk = T / 1000 CpM = -0.703029 + 108.4773 * Tk - 42.52157 * Tk ^ 2 + 5.862788 * Tk ^ 3 + 0.678 End Function Function CpAir(T) 'heat capacity of air 'from Felder & Rousseau, 3rd Ed., p. 635	'8565 / Tk ^ 2
Dim Cp Cp = 0.02809 + 0.000001965 * T + 0.000000004799 * T ^ 2 - 0.00000000001965 CpAir = Cp * 1000 'kJ/kgmol/K End Function	35 * T ^ 3 ' kJ/mol/K 39

Excel Solver setup

lver Par	ameters			
Se <u>t</u> Ok	ojective:		TAirError	
To:	() <u>M</u> ax	() Mi <u>n</u>	O <u>V</u> alue Of:	0
<u>B</u> y Cha	anging Variable	Cells:		
Tair0				

J	K	L	М	N	
NoSteps	200		TAirError	0.0	
dV	1.00E-06		Use Solver to dr	ive this to zer o	
Air F	eed		Reaction	Kinetics	
MassFeedAir	88704	kg/hr	lnk0	42.529	
FAirM	88.70	kg/hr per tube	k0	2.95E+18	1/hr
FAir	3.06	kmol/hr	E	284522	kJ/kgi
TAirF	1250	K			
Tair0	1112.9	K - estimate	Tref	298.15	K

Solution

Converged temperature profile

42

Acetone Cracki Reactor Specif NoTubes	Ŭ	th Counter-	current Hea	t Exchange			Deese					1			
							Rgas	8.314	kJ/kmol/K	NoSteps	200		TAirError	24.0	
							MWA	58.08	kg/kmol	dV	1.00E-06		Use Solver to di	ive this to zero	
NoTubes	fications		Heat Tr	ansfer			MWAir	28.96	kg/kmol						
	1000		Α	149.8	m2/m3					Air F	eed		Reaction	Kinetics	
TotalVolume	2	m3	U	400	kJ/m2/hr/K		Acetone	Feed		MassFeedAir	88704	kg/hr	lnk0	42.529	
VolPerTube	0.002	m3					MassFeedA	7850	kg/hr	FAirM	88.70	kg/hr per tube	k0	2.95E+18	1/hr
TubeID 2	2.67E-02	m3	Feed Cor	nditions			FAM	7.85	kg/hr per tube	FAir	3.06	kmol/hr	E	284522	kJ/kmo
TubeXC 5	5.60E-04	m2	TF	1035	к		FAF	0.135	kmol/hr	TAirF	1250	к			
TubeLength	3.572	m	PF	162	kPa		CAF	0.0188	kmol/m3	Tair0	1100.0	K - estimate	Tref	298.15	к
Reactor	FA	FK	FM	FT	н	т	HAir	TAir	CA	rA	dFA	dн	dHAir		
	(kmol/hr)	(kmol/hr)	(kmol/hr)	(kmol/hr)	(kJ/m3)	(K)		(K)	(kmol/m3)	(kmol/m3/hr)	(kmol/m3/hr)	(kJ/m3/hr)	(kJ/m3/hr)	Conversion	
volume (ms) (i	(kmoi/nr)	(kmol/nr)	(kmoi/nr)	(kmoi/nr)	(KJ/MS)	(K)	(kJ/m3)	(K)	(kmol/m5)	(kmol/m5/nr)	(kmoi/ms/nr)	(kJ/mS/nr)	(kJ/m5/nr)		
0.000E+00	0.13516	0.00000	0.00000	0.00000	-1.639E+04	1035.0	7.656E+04	1100.0	0.01883	242.68	-242.68	3.895E+06	3.895E+06	0.00000	
1.000E-06	0.13492	0.00024	0.00024	0.13540	-1.639E+04	1034.3	7.657E+04	1100.0	0.01877	236.93	-236.93	3.937E+06	3.937E+06	0.00180	
2.000E-06	0.13468	0.00048	0.00048	0.13564	-1.638E+04	1033.7	7.657E+04	1100.1	0.01872	231.49	-231.49	3.977E+06	3.977E+06	0.00355	
3.000E-06	0.13445	0.00071	0.00071	0.13587	-1.638E+04	1033.1	7.658E+04	1100.1	0.01866	226.32	-226.32	4.016E+06	4.016E+06	0.00526	
4 000F-06	0 13422	0 00094	0 00094	0 13610	-1 638F+04	1032.5	7 658F+04	1100.2	0.01861	221 42	-221 42	4.055F+06	4 055F+06	0 00694	1
•		•		•		•		•		•		•	•		
Reactor	FA	FK	FM	FT	н	т	HAir	TAir	CA	rA	dFA	dн	dHAir		
	(kmol/hr)	(kmol/hr)	(kmol/hr)	(kmol/hr)	(kJ/m3)	(K)	(kJ/m3)	(K)	(kmol/m3)	(kmol/m3/hr)	(kmol/m3/hr)	(kJ/m3/hr)	(kJ/m3/hr)	Conversion	
voidine (inio)	(101)/11/	(kinoi/in/	(101/11/	(kinoi) in j	(13/113)	1.57	(10)110)	(197	(101)/110/	(100)/100/101/	(101/110/11/	(10/110/111/	(10)110)111)		_
1.994E-03	0.00011	0.13505	0.13505	0.27021	-3.380E+03	1154.8	8.958E+04	1225.8	0.00001	2.73	-2.73	4.256E+06	4.256E+06	0.99919	
1.995E-03	0.00011	0.13505	0.13505	0.27021	-3.375E+03	1155.0	8.958E+04	1225.8	0.00001	2.68	-2.68	4.247E+06	4.247E+06	0.99921	
1.996E-03	0.00010	0.13505	0.13505	0.27021	-3.371E+03	1155.1	8.959E+04	1225.9	0.00001	2.62	-2.62	4.239E+06	4.239E+06	0.99923	
1.997E-03	0.00010	0.13506	0.13506	0.27021	-3.367E+03	1155.3	8.959E+04	1225.9	0.00001	2.57	-2.57	4.231E+06	4.231E+06	0.99925	
1.998E-03	0.00010	0.13506	0.13506	0.27022	-3.363E+03	1155.5	8.959E+04	1226.0	0.00001	2.52	-2.52	4.222E+06	4.222E+06	0.99926	
1.999E-03	0.00010	0.13506	0.13506	0.27022	-3.358E+03	1155.7	8.960E+04	1226.0	0.00001	2.46	-2.46	4.214E+06	4.214E+06	0.99928	
2.000E-03	0.00009	0.13506	0.13506	0.27022	-3.354E+03	1155.9	8.960E+04	1226.0	0.00001	2.41	-2.41	4.206E+06	4.206E+06	0.99930	

AcetonePFRFullModel.xlsm

Excel Solver setup	D					N	0
			TAirF	1250	K	TAirError	24.0
Solver Parameters	Tair0	1100.0	K - estimate	Use Solver to d	rive this to zero		
Se <u>t</u> Objective:	TAirError						
To: <u>M</u> ax Mi <u>n</u> By Changing Variable Cells:	O <u>V</u> alue Of:	0			Solv	e	
Tair0							
			TAirF	1250	к	N	0
			Ta r0	1115.7	K - estimate	TAirError	0.0
						Use Solver to dr	ive this to zero

Option Explicit Excel Function findT(H, TF, FA, FK, FM) 'solve nonlinear algebraic equation to find T VBA 'using the secant method Dim T1. tol. T2. Tnew Code T1 = TFtol = 0.000001Do T2 = T1 + 0.01Tnew = T1 - 0.01 * fH(H, T1, FA, FK, FM) / (fH(H, T2, FA, FK, FM) - fH(H, T1, FA, FK, FM)) If Abs((Tnew - T1) / Tnew) < tol Then Exit Do T1 = TnewLoop findT = Tnew End Function Function fH(H, T, FA, FK, FM) 'computes difference between given enthalpy rate 'and enthalpy rate computed from a value of T Dim HAt, HKt, HMt, HfA, HfK, HfM, Tref Tref = 298.15HfA = -216.67 * 1000 HfK = -61.09 * 1000 HfM = -74.81 * 1000HAt = FA * (CpAavg(T) * (T - Tref) + HfA)HKt = FK * (CpKavg(T) * (T - Tref) + HfK)HMt = FM * (CpMavg(T) * (T - Tref) + HfM)fH = H - (HAt + HKt + HMt)End Function

Excel VBA Code

```
Function findTAir(Ha, Ta0, FA)
'solve nonlinear algebraic equation to find Tair
'using the secant method
Dim Ta1, tol, Ta2, Tanew
Ta1 = Ta0
tol = 0.000001
Do
  Ta2 = Ta1 + 0.01
  Tanew = Ta1 - 0.01 * fHa(Ha, Ta1, FA) / (fHa(Ha, Ta2, FA) - fHa(Ha, Ta1, FA))
  If Abs((Tanew - Ta1) / Tanew) < tol Then Exit Do
  Ta1 = Tanew
Loop
findTAir = Tanew
End Function
Function fHa(Ha, Ta, FA)
'computes difference between given enthalpy rate
'and enthalpy rate computed from a value of T
Dim Cp, Tref
Tref = 298.15
Cp = CpAiravg(Ta)
fHa = Ha - FA * Cp * (Ta - Tref)
End Function
```

Tubular Reactor with Counter-current Heat Exchange Example: Vapor-phase cracking of acetone to ketene Excel VBA Code – functions for average heat capacity

	Function CpAavg(T)		Function (CpMavg(T)	
	Dim a, b, c, d, Tref, Trefk, Tk, CpT, CpTref	a = -0.703029 b = 108.4773		c, d, e, Tref, Trefk, Tk, CpT, CpTref	
	a = 6.8132			029	
	b = 278.6				
	c = -156.28		c = -42.52		
	d = 34.76		d = 5.862	788	
	Tref = 25 + 273.15	e = 0.678565			
	Trefk = Tref / 1000	Tref = 25 + 2			
	Tk = T / 1000	CpTref = a *			
	CpT = a * Tk + b / 2 * Tk ^ 2 + c / 3 * Tk ^ 3 + d / 4 * Tk ^ 4				
	CpTref = a * Trefk + b / 2 * Trefk ^ 2 + c / 3 * Trefk ^ 3 + d / 4 * Trefk ^ 4			Tk + b / 2 * Tk ^ 2 + c / 3 * Tk ^ 3 + d / 4 * Tk ^ 4 - e / Tk	
				a * Trefk + b / 2 * Trefk ^ 2 + c / 3 * Trefk ^ 3 + d / 4 * Trefk ^ 4 - e / Tr	ef
	CpAavg = (CpT - CpTref) / (Tk - Trefk) End Function			(CpT - CpTref) / (Tk - Trefk)	
			End Func	tion	
	Function CpKavg(T)				
	tim a, b, c, d, e, Tref, Trefk, Tk, CpT, CpTref = 18.909 = 143.56			Function CpAiravg(T)	
				Dim a, b, c, d, Tref, CpT, CpTref	
				a = 28.09	
	c = -130.23			b = 0.001965	
	d = 66.526			c = 0.000004799	
	e = -14.112				
	Tref = 25 + 273.15			d = -0.00000001965	
	Trefk = Tref / 1000			Tref = 25 + 273.15	
	k = T / 1000 cpT = a * Tk + b / 2 * Tk ^ 2 + c / 3 * Tk ^ 3 + d / 4 * Tk ^ 4 + e / 5 * Tk ^ 5 cpTref = a * Trefk + b / 2 * Trefk ^ 2 + c / 3 * Trefk ^ 3 + d / 4 * Trefk ^ 4 + e / 5 * Trefk ^ 5			CpT = a * T + b / 2 * T ^ 2 + c / 3 * T ^ 3 + d / 4 * T ^ 4	
				CpTref = a * Tref + b / 2 * Tref ^ 2 + c / 3 * Tref ^ 3 + d / 4 * T	ret ^ 4
				CpAiravg = (CpT - CpTref) / (T - Tref)	
	CpKavg = (CpT - CpTref) / (Tk - Trefk)			End Function 51	
	End Function				

References:

Spreadsheet Problem Solving and Programming for Engineers and Scientists,

David E. Clough and Steven C. Chapra, CRC Press - Taylor & Francis Group, 2024.

Elements of Chemical Reaction Engineering,

4th Edition Fogler, H. Scott, Prentice-Hall, 2006.

Excel Bootcamps 1, 2, 3 and 4

- ✓ 1: Getting up to speed with Excel
- ✓ 2: Introducing VBA
- ✓ 3: Learning to use Excel to solve typical problem scenarios
- ✓ 4: Detailed modeling of packed-bed and plug-flow reactors

