MATLAB Bootcamps 1, 2 and 3

- 1: Getting up to speed (or back up to speed) with MATLAB
- 2: Learning to use MATLAB to solve typical problem scenarios
- 3: Detailed modeling of packed-bed and plug-flow reactors

Bootcamp 1 Outline	<u>Slide Number</u>
 Managing the MATLAB interface 	1
 MATLAB expressions 	12
 Arrays, vectors and matrices 	13
 Vector/matrix operations 	18
 Array operations 	25
 Common built-in functions 	27
 Output display, user input, and file I/O 	28
Program structure	36
Creating plots	48
User-defined functions	65

Prerequisite: install MATLAB on your computer

https://oit.colorado.edu/software-hardware/software-catalog

MATLAB	\sim
Description:	
Mathematical matrix lab for interactive computation	
Operating System:	
Windows 💷 macOS 🗯 Linux 🔕	
Campuses:	
Boulder	
Eligibility:	
No fee to end-user (Department, Faculty/Staff, or Student)	

Toolboxes typically included in the installation:

Simulink, Control System, Curve Fitting, Optimization, Signal Processing, Spreadsheet Link, Symbolic Math, Statistics and Machine Learning, System Identification You can include all toolboxes. That just requires more memory.

MATLAB launch window

© 1984-2024 The MathWorks, Inc. Protected by U.S and international patents. See mathworks.com/patents. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

R2024a

MATLAB is an abbreviation of <u>Matrix Lab</u>oratory

MATLAB is a product of Mathworks, Inc. It was pioneered by Cleve Moler (<u>https://en.wikipedia.org/wiki/Cleve_Moler</u>) in the 1970s and based originally on the Fortran programming language.

Initial MATLAB application window

(based on MATLAB Version 2024a)

Checking the MATLAB version and toolboxes installed

Co	Command Window		\odot
N	New to MATLAB? See resources for Getting Started.		×
	>> ver		
	MATLAB Version: 24.1.0.2537033 (R2024a)		
	MATLAB License Number: 361635		
	Operating System: Microsoft Windows 11 Enterprise Vers	sion 10.0 (Build 2262	1)
	Java Version: Java 1.8.0_202-b08 with Oracle Corporate	ion Java HotSpot(TM)	64-Bit Serve
	MATLAB	Version 24.1	(R2024a)
	Simulink	Version 24.1	(R2024a)
	• • •		

MATLAB window management

Undocking a window

Command Window $f_x >>$	Clear Command Wi	indow
J., F.	Select All	Ctrl+A
	Find	Ctrl+F
	Print	Ctrl+P
	Page Setup	
	→ Minimize	
	Maximize	Ctrl+Shift+M
	Undock	Ctrl+Shift+U
		<i>v</i> 0
	Ctı	rl-Shift-U

Docking a window

Ctrl-Shift-D

Command Window

Entering commands directly in the Command Window

Clearing commands

😼 Clear Workspace 💌 💌
Variables
All Functions and Variables
>> clear

Value

0.6180

0.6180

Workspace

Name 🔺

🗄 ans

workspace

Command Window

Retrieving previous commands with the up arrow, **↑**

Can edit the command and press Enter from anywhere in the command.

Command History	
% 5/3/2023 2:32 PM%	
r = (sqrt(5)-1)/2;	

Creating MATLAB Scripts

Opening an Editor window for a script

Multiple scripts open, each with its own tab

MATLAB Editor Window

Operates as a simple text editor like Windows Notepad or Wordpad

📝 Editor - untitled					-	- 🗆	×
EDITOR PUBLISH VIEW					h 🔓 🕁	67	? 💿 🕤
New Open Save Print Compare Compare		% ‰	Profiler Analyze	Run Section Break	► (Run S ▼	tep Stop	-
	NAVIGATE	CODE	ANALYZE	SECTION	RUI	N	
1							
	Zoom: 100%	UTF-8	CRLF scri	ipt	Ln 1	Co	ol 1

Select File for Save As Х > This PC > Documents > MATLAB > Bootcamp Ö Search Bootcamp \mathbf{T} \sim ? Organize • New folder ----- \land Name Date modified Туре 🔙 This PC 3D Objects No items match your search. Desktop Documents Downloads Music Pictures Videos 🔩 OSDisk (C:) Sroups (R:) × < | > File name: GoldenRatio \sim Save as type: MATLAB Code files (UTF-8) (*.m) \sim Save Cancel Hide Folders

Saving a script as an m-file

Simple MATLAB Expressions

- Expressions are evaluated left to right
- Parentheses can modify the order of evaluation
- Functions in expressions are evaluated first, e.g., sqrt(•)

Arithmetic operators in order of precedence

- exponentiation
- unary minus, negation (not subtraction)
- *, / multiplication, division
- +, addition, subtraction

Relational operators – yield a T/F result, 1 or 0

- == equality <
- > greater than
- >= greater than or equal to

>> -3^2	>> 3/2*4	>> 3/2/4
ans =	ans =	ans =
-9	6	0.3750

Logical operators, not, and, or, etc. introduced later.

- >= less than or equal to
- <> not equal

less than

MATLAB Arrays		
One-dimensional row vector 1 x 4	<pre>>> [12 -3 5 97.6] ans = 12.0000 -3.0000 5.0000 97.6000</pre>	Can separate by commas.
One-dimensional column vecto 4 x 1	$r = \frac{-4.5000}{12.6000}$	
>> [Two-dimensional matrix 3 x 2 -	14 2 ; -3 -7 ; 0.6 -3.4] = 4.0000 2.0000 3.0000 -7.0000 0.6000 -3.4000	13

Assigning Arrays and Examining in the Workspace and Spreadsheet

>> A = [14 2 ; -3 -7 ; 0.6 -3.4];

Workspace

Although not required, we typically assign matrices to capital letters (or names beginning with capitals) and vectors to lower-case letters (or names beginning with lower-case letters).

Workspace	
Name 🔺	Value
₩A	[14,2;-3,-7;0.6000

A and a are different variable names in MATLAB. Variable names are "case sensitive."

Spreadsheet

1			
	3x2 double		
	1	2	
1	14	2	
2	-3	-7	
3	0.6000	-3.4000	

Spreadsheet can be docked and undocked.

Values can be modified directly.

Creating vectors with the colon (:) operator

start : interval : end if interval left out, assumed to be 1

Creating vectors with the *linspace*(•) and *logspace*(•)

Referencing Elements of Vectors and Matrices

>> A = [14 2 ; -3 -7 ; 0.6 -3.4];>> A(2,2)A(i,j) element in ith row and jth column ans =-7 >> A(1,:) use of the colon (:) operator first row, all columns ans =14 2 >> b = [12 -3 5 97.6]; >> b(2:end)>> A(:,2) ans = ans = all rows, second column 2.0000 -3.0000 97.6000 5.0000 -7.0000-3.4000

Addition and Subtraction are item-by-item

>> a = [1 2 3 4]; >> b = [6 7 8 9]; >> a+b ans = 7 9 11 13

Dimensions must be compatible

```
>> c = [ 5 7 9 ];
>> a - c
Arrays have incompatible sizes for this operation.
```

Addition and Subtraction with scalars

>> a + 3			
ans =			
4	5	6	7

Scalar added to each element of a

Addition and Subtraction with compatible vectors/matrices

```
>> c = [5; 7; 9; 11];
>> a - c
ans =
-4 -3 -2 -1
-6 -5 -4 -3
-8 -7 -6 -5
-10 -9 -8 -7
```

c subtracted from each element of a (this gets tricky!)

Vector-Matrix Multiplication

Inner product of two vectors

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n = \sum_{i=1}^n a_i b_i$$

1 x n · n x 1 ⇒ 1 x 1

must agree

Vector-Matrix Multiplication

Tra	anspose	(rows k	ecome co	olumns a	nd vic	e ve	ersa)	
1	A =			>> A'					
	20.0000 -3.0000	2.00 -7.00	00	ans =					Use the right apostrophe, ', as the transpose operator.
	0.6000	-3.40	00	20.000 2.000	00 -3.0 00 -7.0	000	0.6 -3.4	000 000	
>	>> [1 2 3	4]'		a =					
a	ans =			1	2	3	4	Lug up	
	1				>> a*a'			its 1	transpose is sum of squares
	2				ans =			oft	he elements.
	4				20				
					- 30				

Special Matrices

Identity matrix

1	0	• • •	• • •	0		>> eye(4)			
0	1	0	•••	0		ans =			
0	0	1	•••	0		1	0	0	0
•	•	•	•	•		0	1	0	0
•	•	•	•	•		0	0	1	0
0	0	0	•••	1		0	0	0	1
-				_					
d_1	0	••	• ••	•	0]	>> d = 2 >> d*eye	; (4)		
0	d_2	0	••	•	0	ans =			

Diagonal square matrix

1 1	0	•••	•••	0]	>> d = >> d*e
)	d_2	0	•••	0	ans =
)	0	d_3	•••	0	2
))	• •	•	••••	:	0
)	0	0	•••	d_n	0

d = 2; d*eye s =	(4)		
2	0	0	0
0	2	0	0
0	0	2	0
0	0	0	2
			22

Inverse of a Square Matrix – A⁻¹

$$\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}$$

A =				>> Ainv = A^(-1)	>> A*Ainv
	1	5	6	Ainv =	ans =
	2	9	-1	-0.1066 0.2279 0.2169	1.0000 0 0.0000
	3	-7	4	0.0404 0.0515 -0.0478	0.0000 1.0000 -0.0000
				0.1507 -0.0809 0.0037	0.0000 -0.0000 1.0000

There is also a built-in function to compute the inverse, *inv*(•)

>> inv(A)			
ans =			
-0.1066	0.2279	0.2169	
0.0404	0.0515	-0.0478	
0.1507	-0.0809	0.0037	

There are various numerical methods that can be used to compute the inverse of a matrix. The *inv*(•) function uses a method based on "LU decomposition."

Array Operations

item-by-item calculations using dot operators

>> A = [1 5 6 ; 2 9	-1 ; 3 -7 4]	>> 1 ./	A	т
A =		ans =		T
1 5 6 2 9 -1 3 -7 4		1.00 0.50 0.33	00 0.2000 00 0.1111 33 -0.1429	0.1667 -1.0000 0.2500
>> b = [2 5 -8]' I	>> A .* b ans =			
~ 2 5 -8	2 1 10 4 -24 5	0 12 5 -5 6 -32		

Vectorizing a Calculation

y =

$$4+0.2x-0.7x^{2} + \frac{1}{x}$$

>> x = 0.1:0.1:0.9;
>> y = 4 + 0.2*x -0.7*x.^2+1./x
y =
Columns 1 through 5
14.0130 9.0120 7.3303 6.4680 5.9250
Columns 6 through 9
5.5347 5.2256 4.9620 4.7241

Common Mathematical Functions

$abs(\bullet)$ $log(\bullet)$ $log10(\bullet)$ $log2(\bullet)$ $exp(\bullet)$ $sign(\bullet)$	absolute value natural logarithm base 10 logarithm base 2 logarithm exponential, <i>e</i> to the power signum, 1 if positive, -1 if negative 0 if zero	sin(•) cos(•) tan(•) atan(•) asin(•) acos(•) rad2deg(•)	sine cosine tangent arctangent arcsine arccosine convert radia	arguments in radians results in radians
• • • •		deg2rad(•)	convert degr	ees to radians
sinh(•) cosh(•) tanh(•) asinh(•) acosh(•) atanh(•)	hyperbolic sine hyperbolic cosine hyperbolic tangent inverse hyperbolic sine inverse hyperbolic cosine inverse hyperbolic tangent	atan2(x,y) abs(c) angle(c) real(c) imag(c)	4-quadrant a magnitude of polar angle of real part of c imaginary pa	rctangent f complex no. of complex no. omplex no. rt of complex no.
Constants:	pi value of π eps m	achine epsilon	i,j imagir	hary unit, $\sqrt{-1}$

Output Display

>> A			>> disp([x'	y'])
			0.1000	14.0130
A =	display variable value(s)	0.2000	9.0120
	in the Command windo	w	0.3000	7.3303
1 5 6			0.4000	6.4680
2 9 -1			0.5000	5.9250
3 -7 4	tv	vo vectors	0.6000	5.5347
			0.7000	5.2256
			0.8000	4.9620
>> disp(A)	use the <i>disp</i> function		0.9000	4.7241
1 5 6				
2 9 -1	SS 42			
3 -7 4	>> di	sp(' x	<u>у</u>);с	nsb([x, À,])
	0	د ۲۰۰۰ .	()1.30	
	0	.2000 9.0	0120	
	0	.3000 7.3	3303	
	0	.4000 6.4	1680	
	with headings o	.5000 5.9	9250	
	0	.6000 5.5	5347	
	0	.7000 5.2	2256	
	0	.8000 4.9	9620	
	0	.9000 4.7	/241	

28

The format Statement

to control the display of numerical quantities in the Command window

Example:	format short	this is the default 4 digits to the right of the decimal point			
long	15 digits after t	the decimal point (7 for single types)			
shortE	short with scie	short with scientific notation			
longE	long with scientific notation				
shortG	short fixed or s	short fixed or scientific, whichever is more compact			
longG	long fixed or so	long fixed or scientific, whichever is more compact			
shortEng	short with exp	onent a multiple of 3			
longEng	long with expo	long with exponent a multiple of 3			
+	positive/negati	positive/negative signs displayed			
bank	currency with t	currency with two digits after the decimal point			
hex	hexadecimal representation of a binary number				
rational	ratio of integer	S			

The format Statement

to control line spacing

format loose add blank lines for readability – this is the default

format compact suppress excess blank lines

to reset to all format default settings format default

Output with the fprintf Statement

to control format on the display and write data to an external file similar to C/C++

for output to the Command Window

fprintf(formatSpec,variable list)

Output with the *fprintf* Statement

for output to a file

fprintf(fileID,formatSpec,variable list)

Example

```
>> rn = randn(5000,1);
```

```
>> formatSpec = \[1mm] \approx 10.8 f \n';\]
```

```
>> fileID = fopen('testdata.txt','w');
```

- >> fprintf(fileID,formatSpec,rn);
- >> fclose(fileID);

testdata.txt - Notepad
File Edit Format View Help
1.52069246
-0.33508115
1.13178234
-0.11767071
0.44704924
-0.61660626
0.66401023
-0.79013803
0.0000002

randn generates 5000 random numbers from a standard normal distribution

Input from the User

```
numerical
variable = input(prompt string)
```

string

```
variable = input(prompt string,'s')
```

```
clear
x = input('enter a value for x: ');
ans = input('enter Y or N: ','s');
>> InputExamples
enter a value for x: 23
enter Y or N: Y
```

WorkspaceName ▲ValueSizeImage: Ansign Arrow Arrow

InputExamples.m

Text File Input with the *fscanf* Statement

Example

🗄 rn1

```
>> formatSpec = '%f';
>> fileID = fopen('testdat
>> rn1 = fscanf(fileID, form
```

5000x1 double

			%f for general floating-point numerical format
a.t x t	','	r');	
matSp	ec)	;	'r' for read from file
	5	000x1 double	
		1	Mara dataile availabla
	1	1.5207	
	2	-0.3351	in Help
	3	1.1318	•
	4	-0.1177	
	5	0.4470	
	6	-0.6166	
	7	0.6640	
	0	0 7001	

Saving and Loading Workspace

>> save('testfile')

Value	Size
	Value

>> load('testfile')

Workspace		6
Name 🔺	Value	Size
∃ CO2	296x1 double	296x1
🗄 Fdata	296x3 double	296x3
🗄 fileID	4	1x1
🗈 formatSpec	'%f'	1x2
🗄 fuel	296x1 double	296x1
🗄 sizeFurnace	[3,Inf]	1x2
🖽 ts	296x1 double	296x1
₩x	1x100 double	1x100

Can reload the workspace during a subsequent work session to pick up where you left off.

One-line One-way If

if condition; statement ; end

```
x = input('enter a value for x:');
Sgnx2 = x^2;
if x < 0 ; Sgnx2 = -Sgnx2 ; end
disp(Sgnx2)
```

```
>> OneLineIfExample
enter a value for x:-2
    -4
>> OneLineIfExample
enter a value for x:2
    4
```

OneLineIfExample.m

Multple-line One-way If if condition statement(s) end

```
a = input('enter a value for a:');
b = input('enter a value for b:');
if a < b ;
   temp = a;
   a = b;
   b =temp;
end
disp([a b])
```

```
>> OneWayIfExample
enter a value for a:2
enter a value for b:4
4 2
```

OneWayIfExample.m

Two-way If (if else) if condition statement(s) else statement(s) end

TwoWayIf_Example.m

```
x = input('enter a value for x:');
if x > 0;
    lx = log(x);
else
    lx = log(-x);
end
disp(lx)
>> TwoWayIf_Example
enter a value for x:-0.5
    -0.6931
```

>> TwoWayIf_Example
enter a value for x:12
2.4849

Multi-alternative If (if elseif)

if condition1 statement(s) elseif condition2 statement(s) elseif condition3 statement(s)

 else statement(s)
 end

•

```
x = input('enter a value for x:');
if x > 1;
    xlim = 1;
elseif x < -1;
    xlim = -1;
else
    xlim = x;
end
disp([x xlim])</pre>
```

>> ClampX_Example
enter a value for x:-1.5
 -1.5000 -1.0000

>> ClampX_Example
enter a value for x:2.5
2.5000 1.0000

>> ClampX_Example
enter a value for x:-0.3
 -0.3000 -0.3000

ClampX_Example.m

Program Structure - Selection

the switch structure

```
switch switch_expression
case case_expression1
   statement(s)
case case_expression2
   statement(s)
```

 otherwise statement(s)
 end

SwitchExample.m

(also called the select-case structure)

```
TF = input('\nenter temperature in degF: ');
Un = input('\nenter C, K, or R: ','s');
switch Un
case 'C'
    TC = (TF-32)/1.8;
    fprintf('\ntemp in degC = %6.2f\n',TC)
case 'K'
    TK = (TF-32)/1.8 + 273.15;
    fprintf('\ntemp in K = %6.2f\n',TK)
case 'R'
    TR = TF + 459.67;
    fprintf('\ntemp in degR = %6.2f\n',TR)
end
```

>> TempConvert

```
enter temperature in degF: -100
```

enter C, K, or R: R

temp in degR = 360.00

the for loop structure for index = start:increment:end statement(s) end the break option for index = start:increment:end statement(s) if condition ; break ; end statement(s) end the continue option for index = start:increment:end statement(s) if condition ; continue ; end statement(s) end

count-controlled repetition

increment = 1 if left out

premature exit from a for loop

premature cycling in a for loop

the for loop structure – computing the median absolute deviation (MAD)

```
x = [10.1,11.5,9.6,9.6,10.4,9.4,10.2,9.9,9.1,9.8];
xmed = median(x);
n = length(x);
for i = 1:n
    xdev(i) = abs(x(i) - xmed);
end
xMAD = median(xdev)/0.6745;
MAD1.m
```

<u>Note</u>: when possible look for the opportunity to use vector/matrix operations in lieu of for loops

```
x = [10.1,11.5,9.6,9.6,10.4,9.4,10.2,9.9,9.1,9.8];
xmed = median(x);
xdev = abs(x-xmed); % vector operation MAD2.m
xMAD = median(xdev)/0.6745;
disp(xMAD)
```

using the break command

```
x = [ 1 1 2 3 5 8 13 21];
for i = 1:8
    if x(i) > 5
        break
    end
disp([i x(i)])
```

>> ArrayFind 6 8

breakexample.m

43

using the continue command

x = randn(5,1);	>> zero out negatives	
<pre>n = length(x);</pre>	0.3999	
for i = 1:n	0	
if x(i) > 0; continue; end	0	continueexample.m
x(i) = 0;	0	
end	1.1454	
disp(x)		

the for loop structure – nested for loops

```
for i = 1:5
    for j = 1:5
        A(i,j) = 1/(i+j-1);
    end
end
disp(A)
```

nestedloopsexample.m

>>	HilbertMatrix						
	1.0000	0.5000	0.3333	0.2500	0.2000		
	0.5000	0.3333	0.2500	0.2000	0.1667		
	0.3333	0.2500	0.2000	0.1667	0.1429		
	0.2500	0.2000	0.1667	0.1429	0.1250		
	0.2000	0.1667	0.1429	0.1250	0.1111		

the while loop structure

while condition statement(s) end

cycles while condition remains true

break and continue can be used

the general loop structure

while 1

```
pre-test statement(s)
```

```
if condition ; break ; end
post-test statement(s)
```

end

1 is equivalent to True, so loop never exits on while statement

this is called a mid-test loop

if no pre-test statements ⇒ called a pre-test loop

if no post-test statements ⇒ called a post-test loop

the while loop structure

find a root of
$$f(x) = \frac{1}{(x-q)^2 + 0.01} + \frac{1}{(x-r)^2 + 0.04} - s = 0$$

 $f'(x) = \frac{2(q-x)}{((x-q)^2 + 0.01)^2} + \frac{2(r-x)}{((x-r)^2 + 0.04)}$

x = 0.5; xerr = x; q = 0.3; r = 0.9; s = 12; while abs(xerr) > 1.e-7 fx = 1./((x-q)^2+0.01) + 1./((x-r)^2+0.04)-s; fpx = 2*(q-x)/((x-q)^2+0.01)^2+2*(r-x)/((x-r)^2+0.04)^2; xnew = x - fx/fpx; % Newton-Raphson method xerr = xnew-x; x = xnew; end disp(x)

WhileLoop1.m

the general loop structure

x = 0.5; xerr = x; q = 0.3; r = 0.9; s = 12; while 1 fx = 1./((x-q)^2+0.01) + 1./((x-r)^2+0.04)-s; fpx = 2*(q-x)/((x-q)^2+0.01)^2+2*(r-x)/((x-r)^2+0.04)^2; xnew = x - fx/fpx; % Newton-Raphson method xerr = xnew-x; if abs(xerr) < 1.e-7 ; break; end x = xnew; end disp(x)

WhileLoop2.m

Simple 2-D Plots

```
rn = randn(5000,1);
plot(rn);
```

randomnumberplot.m

Simple 2-D Plots

Plotting a function using vectorization Adding a grid, axis labels, and a title

Plotting data with markers and lines Controlling color and marker shape

2-D Plots with logarithmic scale(s)

```
>> sizeVP = [2 Inf];
>> formatSpec = '%f';
>> fileID = fopen('H2SO4VaporPressure.txt','r');
>> TPV = fscanf(fileID,formatSpec,sizeVP);
>> TPV = TPV';
```


SaltSolutionsPlotExample.m

Density of NaCl Aqueous Solutions						
			Tempe	erature		
		0 °C	10 °C	25 °C	40 °C	
	1	1.00747	1.00707	1.00409	0.99908	
	2	1.01509	1.01442	1.01112	1.00593	
10/+ 0/	4	1.03038	1.02920	1.02530	1.01977	
	8	1.06121	1.05907	1.05412	1.04798	
NaCl	12	1.09244	1.08946	1.08365	1.07699	
Naci	16	1.12419	1.12056	1.11401	1.10688	
	20	1.15663	1.15254	1.14533	1.13774	
	24	1.18999	1.18557	1.17776	1.16971	
	26	1.20709	1.20254	1.19443	1.18614	

2-D Plots with multiple curves and a legend

>>	Dens	=	[1.00747,1.00707,1.00409,0.99908;	1.00747,1.00707,1.00409,0.99908	• •
			1.01509,1.01442,1.01112,1.00593;	1.01509,1.01442,1.01112,1.00593	
			1.03038,1.02920,1.02530,1.01977;	1.03038,1.02920,1.02530,1.0197	
			1.06121,1.05907,1.05412,1.04798;	1.06121,1.05907,1.05412,1.04798	
			1.09244,1.08946,1.08365,1.07699;	1.09244,1.08946,1.08365,1.07699	
			1.12419,1.12056,1.11401,1.10688;	1.12419,1.12056,1.11401,1.10688	
			1.15663,1.15254,1.14533,1.13774;	1.15663,1.15254,1.14533,1.13774	
			1.18999,1.18557,1.17776,1.16971;	1.18999,1.18557,1.17776,1.16971	
			1.20709,1.20254,1.19443,1.18614];	1.20709,1.20254,1.19443,1.1861	

>> WtPct = [1,2,4,8,12,16,20,24,26]';
>> plot(WtPct,Dens)
>> grid;
>> xlabel('Wt Pct NaCl')
>> ylabel('Density - gm/cc')
>> title('Density of NaCl Solutions')
>> legend('0 degC','10 degC','25 degC','40 degC', ...
 'location','northwest')

2-D Plots with multiple curves and a legend

2-D Plots with both left and right vertical axes

```
>> sizeFurnace = [3 Inf];
>> formatSpec = '%f';
>> fileID = fopen('FurnaceData.txt','r');
>> Fdata = fscanf(fileID,formatSpec,sizeFurnace);
>> Fdata = Fdata';
>> ts = Fdata(:,1);
>> fuel = Fdata(:,2);
>> CO2 = Fdata(:,3);
>> yyaxis left
>> plot(ts,fuel)
>> yyaxis right
>> plot(ts,CO2)
>> grid
>> xlabel('Time - seconds')
>> ylabel('Flue Gas CO2 %')
>> yyaxis left
>> ylabel('Fuel Rate Normalized')
```

twinaxesplotexample.m

yyaxis command

Creating Plots	3-D Contour and Surface Plots			Creating a meshgrid			d	
x =	x =				>>	[X,Y] = me	shgrid(x,	у);
-2.0000 -1.5000 -1.0000 -0.5000 0 0.5000 1.0000 1.5000 2.0000	Columns 1 through -2.0000 -1.5000 -2.0000 -1.5000 -2.0000 -1.5000 -2.0000 -1.5000 -2.0000 -1.5000 -2.0000 -1.5000 -2.0000 -1.5000 -2.0000 -1.5000 -2.0000 -1.5000	5 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000	-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000	0 0 0 0 0 0 0 0 0	Columns 6 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	through 9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000	2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
>> y = x	Υ =				Columns 6	through 9		
surfaceplotexample.	Columns 1 through -2.0000 -2.0000 -1.5000 -1.5000 -1.0000 -1.0000 -0.5000 -0.5000 0.5000 0.5000 1.0000 1.0000 1.5000 2.0000	5 -2.0000 -1.5000 -1.0000 -0.5000 0.5000 1.0000 1.5000 2.0000	-2.0000 -1.5000 -1.0000 -0.5000 0.5000 1.0000 1.5000 2.0000	-2.0000 -1.5000 -1.0000 -0.5000 0.5000 1.0000 1.5000 2.0000	$\begin{array}{c} -2.0000 \\ -1.5000 \\ -1.0000 \\ 0.5000 \\ 0 \\ 0.5000 \\ 1.0000 \\ 1.5000 \\ 2.0000 \end{array}$	$\begin{array}{c} -2.0000 \\ -1.5000 \\ -1.0000 \\ -0.5000 \\ 0 \\ 0.5000 \\ 1.0000 \\ 1.5000 \\ 2.0000 \end{array}$	-2.0000 -1.5000 -1.0000 0.5000 0.5000 1.0000 1.5000 2.0000	-2.0000 -1.5000 -0.5000 0.5000 1.0000 1.5000 2.0000

3-D Contour and Surface Plots

3-D Contour and Surface Plots

3-D Contour and Surface Plots Based on Data

```
Temp = [0,10,25,40];
[WP,TP] = meshgrid(WtPct,Temp);
WP = WP' ; TP = TP';
contour(WP,TP,Dens,'ShowText','on')
grid
xlabel('Wt Pct NaCl')
ylabel('Temperature - degC')
title('Density of NaCl Solutions')
```

SaltSolutionsContourPlot.m

Pie charts

A plot command creates a figure window where the plot is displayed. If another plot command is issued, that plot replaces the former plot in that figure window. To créate a new figure window for the next plot, use the figure command. Each figure window is numbered and can be made the current figure window with the *figure*(n) command where n is the window number. A figure window can be removed with the *clf*(n) command. All figures can be cleared with the *cla* command.

```
sizeFurnace = [3 Inf];
formatSpec = '%f';
fileID = fopen('FurnaceData.txt','r');
Fdata = fscanf(fileID,formatSpec,sizeFurnace);
Fdata = Fdata';
ts = Fdata(:,1);
fuel = Fdata(:,2);
C02 = Fdata(:,3);
plot(ts,fuel)
figure
plot(ts,C02)
```

figurewindowexample1.m

Copy a plot to a Word document or PowerPoint slide or . . .

Zoom in on a portion of the plot

Multiple subplots in a figure window

subplot(m,n,p)

m: no. of rows
n: no. of columns
p: subplot selected
(counting across then down)

figurewindowexample2.m

64

MATLAB Function m-Files

General syntax

cart_to_polar.m

```
function [ outarg1, outarg2, ... ] = function_name( inarg1, inarg2, ...)
```


Save as type: MATLAB Code files (UTF-8) (*.m)

as name of file – suggested automatically

MATLAB Function m-Files

Example

<pre>>> [rad th] = cart_to_polar(-3,-4)</pre>	
rad =	Note: MATLAB has a built-in function <i>cart2pol</i> .
5	Always check via Help to see whether there is already a function available before creating one!
th =	
-2.4981	
>> thdeg = rad2deg(th)	
thdeg =	
-143.1301	
	66

MATLAB m-Scripts in the Editor

Enter code in Editor window Save file Run the script, button or F5

When script is saved, Save icon grays out. Save

For any changes in the script, Save icon re-colors alerting the need to Save. Save

If errors, single-step the code (F10), observing variable values in the Workspace.

MATLAB m-Scripts in the Editor

PengRobinsonMethaneExample.m

Adding comments to scripts

- descriptive comments on their own line
- comments appended to code lines
- clarifying units

Pengkor	binsonCH4.m 🛪 🛨		
1 🖓	% compute gas pressure using	15	% conditions
2	% the Peng-Robinson equation	16	T = 700; % K
3	% of state for methane	17	Vm = 0.1; % m3/kmol
4	clear % clear Workspace	18	Tr = T/Tc;
5	clc % clear Command window	19	% Peng-Robinson parameters
6	<pre>global R % make R availble to functions</pre>	20	a = 0.45724*R^2*Tc^2/Pc;
7	R = 8.314; % kJ/kmol/K	21	b = 0.07780*R*Tc/Pc;
8	% methane molecular weight	22	alpha = (1+(0.37464+1.54226*w-0.26992*w^2)*(1-sqrt(Tr)))^2;
9	MW = 16.04; % kg/kmol	23	% compute pressure in Pa
10	% critical properties for methane	24	P = R*T/(Vm-b)-a*alpha/(Vm^2+2*b*Vm-b^2);
11	Tc = 191.15; % K	25	% convert pressure to kPa
12	Pc = 4.641e6; % Pa	26	PM = P/1000; % kPa
13	% acentric factor for methane	27	% display result
14	w = 0.0115;	28	<pre>fprintf('Pressure = %4.1f kPa\n',PM)</pre>

Pressure = 58.2 kPa

Reference

Applied Numerical Methods with MATLAB for Engineers and Scientists Steven C. Chapra 5th Edition, McGraw-Hill, 2022.

MATLAB – What's Next?

Bootcamp 2

- ✓ 1: Getting up to speed (or back up to speed) with MATLAB
- 2: Learning to use MATLAB to solve typical problem scenarios
- 3: Detailed modeling of packed-bed and plug-flow reactors

