
• Process modeling & numerical characteristics
• Algebraic models

o Single, nonlinear
o Linear sets
o Nonlinear sets

• ODE models
o Initial value problems
o Split boundary problems

• Optimization
• Curve-fitting 1

MATLAB Bootcamps 1, 2 and 3
 1: Getting up to speed (or back up to speed) with MATLAB
• 2: Learning to use MATLAB to solve typical problem scenarios
• 3: Detailed modeling of packed-bed and plug-flow reactors

Bootcamp 2 Outline
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Process Modeling

Process
Model

Basic
Data

Operating
Conditions

Numerical
Methods

Process
Performance

Operating
Data

Model
Adjustment

Comparison

Often not possible at the design stage.
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Process Modeling
Developing the Process Model

Conservation Balances
• Material
• Energy

o Mechanical/Momentum
o Thermal

• Thermodynamics
o Equilibrium, Phase and Chemical
o Heat Transfer

• Mass Transfer
• Separations
• Reaction Kinetics
• Monitoring and Control

Equipment
• Vessels

o Tanks, Drums
o Columns
o Reactors

• Heat Exchangers
• Piping, Valves, Fittings
• Pumps, Compressors
• Columns
• Reactors
• Solids-handling

o Crystallization
o Filtration

• Instrumentation
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Numerical Characteristics

• Algebraic equations
o Nonlinear, one or more
o Linear sets

• Differential equations
o Ordinary (ODEs)
o Partial (PDEs)

• Optimization
• Curve-fitting

when combined:
Differential-Algebraic
Systems (DAEs)
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Examples Considered
• Single, nonlinear algebraic equation

o water-gas shift equilibrium
• Set of linear algebraic equations

o absorber column
• Set of nonlinear algebraic equations

o steam/water equilibrium
• Single nonlinear ordinary differential equation

o batch reactor, single reaction
• Set of nonlinear ordinary differential equations

o batch reactor, multiple reactions
• Second-order ordinary differential equation

o split boundary conditions
• Set of linear differential equations

o split boundary conditions
o countercurrent heat exchanger

• Optimization
o single factor, humps equation
o multiple factors with constraints

grain bin design
• Linear Regression

o polynomial
density of MeOH-H2O solutions

o general, NaCl solution density
• Nonlinear Regression

o Antoine equation
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Solving Single Algebraic Equations - Bisection

First iteration Second iteration
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Solving an Algebraic Equation with Bisection

bisect.m
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Example       1 2sin 2 cosh 2 0 0 3f x x x x x      

Solving an Algebraic Equation with Bisection

bisect_test.m

fn.m
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Solving an Algebraic Equation with Bisection
Adding the number of iterations as an optional argument

• varargin indicates optional extra argument(s)
• nargin provides the number of arguments

provided
• varargin is a cell array
• cell2mat converts first element to numerical

type

bisect1.m
bisect1_test.m
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Solving an algebraic equation
with MATLAB’s fzero function

xs = fzero(f,x0)

  0f x 

f  :  function “handle”, @name
x0 :  initial estimate for solution

Example     0sin 1 0 0.5f x x x x    

The fzero function uses a combination of the
bisection, secant, and inverse quadratic
interpolation methods, switching between the
methods to preserve stability and increase
efficiency of convergence.  See MATLAB Help.

fzero_example.m

f.m
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Example:  water-gas shift equilibrium 2 2 2CO H O H CO  

   
     2 2

eq
2

H CO
K T

H O CO





 eq
3317ln K T 3.112
T

       T K

Feed
kmol/hr

H2 450
CO 500

CO2 50

H2O 1150

T = 1200 °C
P = 1 atm

 
 

 2 2

2

H CO
eq

H O CO

Feed x Feed x
f x K T 0

Feed x Feed x

          
    

where     is the shift to
equilibrium in kmol/hr.

x

Solve for     and the reactor product flow rates for the given temperature.x

Equilibrium
Reactor

Product
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Setting up a function to compute f(x)
Water-gas shift equilibrium

fwg.m

Solution apparently
between 150 and 175 C.



13

Carrying out a case study
of the equation error

Water-gas shift equilibrium

WaterGasCaseStudy.m

Solution
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Including temperature and feed specs
as arguments to the function

Water-gas shift equilibrium

fx.m
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Water-gas shift equilibrium
Use of an anonymous function

Main script
Set T and Feed rates
Set x0

xsoln = fzero(fname,x0)

function fx with arguments
x, T, Feed rates

need to get these values “through”
fzero to fx

here, we use an interval for the initial estimates
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Water-gas shift equilibrium
Case study for a range of temperatures with a plot

WaterGasShiftCaseStudyWithPlotWithfzero.m
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500 1000 1500

Temperature - degC

100

200

300

400

500

600

700

800

900

1000

1100
Water-Gas Shift Equilibrium

H2
CO2
H2O
CO

Water-gas shift equilibrium
Case study for a range of temperatures with a plot
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Solving Sets of Linear Algebraic Equations

11 1 12 2 1n n 1

21 1 22 2 2n n 2

n1 1 n2 2 nn n n

a x a x a x b
a x a x a x b

a x a x a x b

   
   

   






11 12 1n 1 1

21 22 2n 2 2

n1 n2 nn n n

a a a x b
a a a x b

a a a x b

     
     
      
     
     
     




     


 A x b

n equations in n unknowns

Solving the equations:
1. matrix algebra and computations

2. more efficient numerical method
• Gaussian elimination with enhancements
• LU decomposition

1 1    A A x A b
1  I x A b
1 x A b compute the inverse of A

and multiply it by b
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Solving Sets of Linear Algebraic Equations
Example 3 2 10

3 2 5
1

x y z
x y z
x y z

  
   

   

3 2 1 10
1 3 2 5
1 1 1 1

x
y
z

     
            
            

Using “left divide” preferred
also mldivide(A,b).
Versatile solver, typically
uses LU decomposition.

Uses LU decomposition.

A-1*b  not recommended
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Solving Sets of Linear Algebraic Equations

Example problem:  Six-stage absorber column

G , y1L , x0

G , y7L , x6

1

2

3

4

5

6

i iy ax b 
Equilibrium relationship
on tray i

x0 , y7 , L and G specified

i 1 i 1 i iL x G y L x G y       

Component material balance on tray i

Incorporate equilibrium relationship
 i 1 i i 1L x L G a x G a x 0         
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Solving Sets of Linear Algebraic Equations
Example problem:  Six-stage absorber column

G , y1L , x0

G , y7L , x6

1

2

3

4

5

6

    

   

   

   

   

    

L Ga x Gax Lx

Lx L Ga x Gax

Lx L Ga x Gax

Lx L Ga x Gax

Lx L Ga x Gax

Lx L Ga x G y b

b g
b g
b g
b g
b g
b g b g

1 2 0

1 2 3

2 3 4

3 4 5

4 5 6

5 6 7

0

0

0

0

Write component material balances for each tray and rearrange
with unknowns on the left and knowns on the right.

This represents a set of six linear equations in the six unknown
mass fractions.

Basic data:   equilibrium model:   a =  0.7,   b = 0
Operating conditions: L = 20 mol/s,   G = 12 mol/s

Inlet gas mole fraction:  y7 = 0.1
Inlet liquid mole fraction:  x0 = 0
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Solving Sets of Linear Algebraic Equations
Example problem:  Six-stage absorber column

Absorber.m
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Solving Sets of Nonlinear Algebraic Equations
 
 

 

1 1 2 n

2 1 2 n

n 1 2 n

f x ,x , ,x 0

f x ,x , ,x 0

f x ,x , ,x 0













  f x 0or

Common solution technique:  Newton’s Method
Start with an initial estimate of the solution: 0x
Iterate with    i 1 i 1 i i   x x J x f x until a convergence criterion is met.

1 1 1

1 2 n

2 2 2

1 2 n

n n n

1 2 n

f f f
x x x
f f f
x x x

f f f
x x x

   
    
   
     
 
    
    

J





   



Jacobian
matrix or, where analytical derivatives are difficult:

     i i i i i i
1 1 2 n 1 1 2 ni1

1

f x ,x , ,x f x ,x , ,xf
x 2

 



  


 
x

 

and so forth.
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Solving Sets of Nonlinear Algebraic Equations
Solution with Matlab’s fsolve function

Example 2 2 4 0
1 0

x y
x y
  
  

2 2x y
y x

 
  
 

J

x = fsolve(fun,x0)
without supplying J supplying J
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Solving Sets of Nonlinear Algebraic Equations
Example problem:  steam/water equilibrium

 mP V R T 273.15
MW

     10
Blog P A

T C
 



ideal gas law Antoine equation
P : absolute pressure, Pa
V : vapor volume, m3

m : mass of vapor, kg
MW : H2O molecular weight,  18.02 kg/kgmol
R : gas law constant,  8314 (Pa·m3)/(kmol·K) 
T : temperature, °C

A,B,C : Antoine constants for H2O
A 11.21 B 2354.7 C 280.71  

Operating conditions: m 3.755 kg 3V 3.142 m
Solve for       and       .P T
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Solving Sets of Nonlinear Algebraic Equations
Example problem:  steam/water equilibrium

Formulating the problem for solution

   

 

1

2 10

mf T ,P P V R T 273.15
MW

Bf T ,P log P A
T C

     

  
    2

mV R
MWP

1 BT
ln 10 P C T

                 

J

analytical
Jacobian
practical
in this case

A possible issue here is the comparative scaling of the two equations.
Typical values for the PV term could be of magnitude 106; whereas,
terms in the second equation are closer to unity.  A practical approach
to this is to scale the first equation by dividing it by, e.g., 100,000.

   

 

1

2 10

mf T ,P P V R T 273.15 100000
MW

Bf T ,P log P A
T C

       
 

  
    2

mV 1e5 R 1e5
MWP

1 BT
ln 10 P C T

              
   

J



27

Solving Sets of Nonlinear Algebraic Equations
Example problem:  steam/water equilibrium

SteamEq.m

SolveStmEquil.m
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Solving Single Differential Equations
Two types

 dy f t
dt



 ,dy f t y
dt



 
0 0

0
f fy t

fy t
dy y y f t dt   

finding the area under the curve
or quadrature

generally, analytical solutions 
are not feasible

numerical methods
used to solve
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Solving Single Differential Equations
Quadrature – Analytical function

   
2

0
cos cosdy t t y t t dt

dt


     

MATLAB integral function
integral(fun,tmin,tmax)

using an anonymous
function here

Note the use of the
dot (.) operator since
integral may call intfun
with multiple values.

quadrature.m
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Solving Single Differential Equations
Quadrature – Analytical function

       
21

21
2

az dPf z e f z P z a f z dz
dz 


        

Standard normal distribution – cumulative probability

-5 -4 -3 -2 -1 0 1 2 3 4 5
z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Note:  MATLAB has a cdf function in
the Statistics toolbox.

stdnormcumprob.m
stdnormdens.m
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Solving Single Differential Equations
Quadrature – Data
MATLAB trapz function trapz(ydata,tdata) trapezoidal rule integration

0 0.5 1 1.5 2 2.5 3 3.5 4
t

0

20

40

60

80

100

120

140

160

180

200

testtrapz.m
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Solving Single Differential Equations

    0, 0dy f t y y y
dt

 

Initial Value Problem MATLAB has a family of functions
for solving ODEs. Two commonly 
used functions are
ode45 for most ODEs
ode15s for “stiff” ODEs
A “stiff” ODE is one where the
derivative changes dramatically
over the solution domain.
For sets of ODEs, it is where one
or more equations are dramatically
“faster” than others.
ode15s is also required when
solving systems which combine
ODEs with nonlinear algebraic eqns.
See “Choose an ODE Solver” in
Help.

Example

   25 0 0.08 0 5dy y t y t
dt

    

There is an analytical solution:
2 0.4 0.08y t t  
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

0

0.5

1

1.5

2

2.5

3 105

numerical
analytical

Solving Single Differential Equations
Initial Value Problem

Example using ode45 Numerical solution blows up!

parasite.m
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Solving Single Differential Equations
Initial Value Problem
Example using ode45 with tightened tolerances

numerical and analytical
solutions coincide 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

5

10

15

20

25

30
numerical
analytical

parasite1.m
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Single Equation Example – Isothermal Batch Reactor A B C 

Rate of disappearance of A: A
A B

dC k C C
dt

   

Initial conditions:

k

 A A0C 0 C  B B0C 0 C  C C0C 0 C

Basic data: 1 1k 14.7
mol L min

 

Initial conditions: A0
molC 0.0209
L

 B0 A0C C 3 C0C 0

Stoichiometric relationships:     B B0 A0 AC t C C C t  

    C C0 A0 AC t C C C t  

Solving Single Differential Equations
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Single Equation Example – Isothermal Batch Reactor
Information Flow Diagram

B

A
A

dC k C C
dt

    0 0B B A AC C C C  
AC

0AC k
0AC0BC

0C A AC C C 

0AC

Integrator

Solving Single Differential Equations
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Single Equation Example – Isothermal Batch Reactor

batch.m
SolveBatchReactor.m

Solving Single Differential Equations
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Single Equation Example – Isothermal Batch Reactor
Matlab solution using the ode15s function

Differential Algebraic Equations (DAE) Approach

batchDAE.m

Solving Single Differential Equations

two algebraic equations
set equal to zero
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SolveBatchReactorDAE.m

Single Equation Example – Isothermal Batch Reactor
Matlab solution using the ode15s function

Differential Algebraic Equations (DAE) Approach

Solving Single Differential Equations
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Single Equation Example – Isothermal Batch Reactor
Matlab solution using the ode15s function

Differential Algebraic Equations (DAE) Approach

Solving Single Differential Equations

0 2 4 6 8 10 12 14 16 18 20
Time - minutes

0

0.005

0.01

0.015

0.02

0.025
Batch Reactor DAE Solution

Ca
Cb
Cc
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Solving Multiple Differential Equations
Example

 

 

21
1 1 2 1

22
1 2 2 2

2 2 1 0 2

3 2 2 0 0

dx x x x x
dt
dx x x x x
dt

     

     

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x1
x2

solvemultipleODEs.m
derivs.m
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Multiple Equation Models – Isothermal Batch Reactor

A B C F
A C D F
A D E F

  
  
  

Svirbely, W.J., and J.A. Blauer, The Kinetics of Three-step Competitive Consecutive Second-order Reactions,
J. Amer. Chem. Soc., 83, 4115, 1961. 
Svirbely, W.J., and J.A. Blauer, The Kinetics of the Alkaline Hydrolysis of 1,3,5,Tricarbomethoxybenzene,
J. Amer. Chem. Soc., 83, 4118, 1961. 

1k

2k

3k

 

   

 

 

1 2 3

1

1 2

2 3

dA molk AB k AC k AD A 0 0.0209
dt L

A 0dB k AB B 0
dt 3
dC k AB k AC C 0 0
dt
dD k AC k AD D 0 0
dt

    

  

  

  

From stoichiometry:  A 0 A C 2D
E

3
  

 and  F A 0 A 

1

2

3

1 1k 14.7
mol L min
1 1k 1.53

mol L min
1 1k 0.294

mol L min

 

 

 

Solving Multiple Differential Equations
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Multiple Equation Models – Isothermal Batch Reactor
Information Flow Diagram

1 2 3
A

A B A C A D
dC k C C k C C k C C
dV

   
A

0F A A 

Integrator

1
B

A B
dC k C C
dV

  
B

1 2
C

A B A C
dC k C C k C C
dV

  
C

2 3
D

A C A D
dC k C C k C C
dV

  
D

0A A C 2DE
3

  


Solving Multiple Differential Equations



44

Solving Multiple Differential Equations
Multiple Equation Models – Isothermal Batch Reactor

4 ODEs
2 algebraic equations

unpack y into
familiar variables

additional
arguments

multibatch.m
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Multiple Equation Models – Isothermal Batch Reactor
MATLAB solution as a DAE system

SolveMultiBatchDAE.m

Solving Multiple Differential Equations
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Solving Multiple Differential Equations
Multiple Equation Models – Isothermal Batch Reactor
MATLAB solution as a DAE system
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Solving Multiple Differential Equations
Multiple Equation Models – Isothermal Batch Reactor
MATLAB solution as a DAE system

0 100 200 300 400 500
Time - minutes

0

0.005

0.01

0.015

0.02

0.025
Isothermal Batch Reactor - Multiple Reactions

A
B
C
D
E
F
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Solving Ordinary Differential Equations
Second-order differential equation with split boundary conditions

   
2

2

1 0 5 10 8 0 10
4

d y dy y y y t
dt dt

     

Decompose into two first-order ODEs

   1

1
1

0 5 10 8

1
4

dy y y y
dt
dy y y
dt

  

  “Shooting” Strategy
1. Estimate a value for y1 (dy/dt) at t = 0.
2. Solve the ODEs to t = 10
3. Check y(10) versus the required value, 8.
4. Adjust the y1(0) value and repeat steps 2 and 3

until the desired y(10)=8 value is obtained.
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Solving Ordinary Differential Equations
Second-order differential equation with split boundary conditions

Equations solved with an
estimate for y1(0). Clearly
doesn’t meet the required
final condition y(10)=8.

0 1 2 3 4 5 6 7 8 9 10
t

0

100

200

300

400

500

600

splitboundary.m
diffeqs.m
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Solving Ordinary Differential Equations
Second-order differential equation with split boundary conditions
Employ fzero to satisfy the final boundary condition

0 1 2 3 4 5 6 7 8 9 10
t

0

1

2

3

4

5

6

7

8

splitboundary1.m
solvesplitboundary.m
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

   

   

c i i
h c c ci

c c

h o o
h c h hi

h h

dT h A T T T 0 T
dz w C
dT h A T T T L T
dz w C

  

  

i i
o

o

h Dh
D



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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

 z : distance down the heat exchanger from the cold fluid inlet (on the left) 
 L: length of the heat exchanger 
 cT : temperature of the cold fluid, a function of z  

 ciT : cold water inlet temperature, at z 0  

 hiT : hot water inlet temperature, at z L  

 hT : temperature of the hot fluid, a function of z  

 cw : mass flow rate of cold fluid 

 hw : mass flow rate of hot fluid 

 cC : heat capacity of cold fluid 

 hC : heat capacity of hot fluid 

 iA: inside area for heat transfer (cold fluid) per unit length 

 oA : outside area for heat transfer (hot fluid) per unit length 

 ih : inside heat transfer coefficient (cold fluid) 

 oh : outside heat transfer coefficient (hot fluid) 
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

The issue we have with solving these equations is that the cold stream boundary 
condition is at z = 0 and the hot stream boundary condition is at
z = L, the other end of the heat exchanger.  A practical way to handle this is to estimate 
the hot stream temperature at z = 0, proceed with the solution, and adjust that estimate 
later on to meet the condition at z = L.

   

   

c i i
h c c ci

c c

h o o
h c h hi

h h

dT h A T T T 0 T
dz w C
dT h A T T T L T
dz w C

  

  
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

Basic data and operating conditions
Outer tube
11 BWG
OD 2 in, ID 1.76 in

Inner tube
11 BWG
OD 1 in, ID 0.76 in

Length  5 m

Inlet temperatures
Hot stream  50 C
Cold stream  10 C

Fluid density (H2O)
988 kg/m3

Heat capacity (H2O)
4187 J/(kgC)

Hot stream flow rate  1 L/s
Cold stream  0.3 L/s

Heat transfer coefficient
hi = 14,000 W/(m2C)
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

Solve the model first with an estimate for
the hot stream outlet temperature.

tube_in_tube_heat_exchanger.m
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

htexr.m
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

50 C not quite met
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

Use the fzero function to adjust the hot stream outlet
temperature until the inlet hot stream condition is met. 

tube_in_tube_heat_exchanger_fzero.m
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

fzero adjusts Tho until Thi computed meets the spec,
that is, ferr = 0

SolveODEs.m
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50 C met

Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger



63

Optimization
Finding a maximum or minimum of a function with a
single adjustable variable
Example  

   2 2
1 1 6

0.3 0.01 0.9 0.04
f x

x x
  

   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

10

20

30

40

50

60

70

80

90

100

humps.m
plothumps.m
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Optimization
Finding a maximum or minimum of a function with a
single adjustable variable
Using MATLAB function fminbnd

xmin = fminbnd(fun,x1,x2)

Find a maximum using - fun

findmin.m
humps1.m
findmax.m
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Optimization
Finding a maximum or minimum of a function with
multiple adjustable variables and one or more constraints
Example:
Optimal grain bin design

 3

max

10 m

20.4
cyl conV V V



  

 

Constraints

Minimize surface area
not including the top
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Optimization

Finding a maximum or minimum of a function with
multiple adjustable variables and one or more constraints
Using MATLAB function fmincon
xmin = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)

fun function that returns value of performance criterion
xmin, x0 vectors of initial variables
A, b linear inequality constraints,  Ax  b
Aeq, beq linear equality constraints, Aeqx = beq
lb, ub bounds on x
nonlcon nonlinear constraints
options various options
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Optimization
Example:
Optimal grain bin design

S.m
V.m
bincon.m
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Optimization
Example:
Optimal grain bin design

optbin.m
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Curve-Fitting
Polynomial regression

coeff = polyfit(x,y,order)
y = polyval(x,coeff)

Example:  

DensityModel.m
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Curve-Fitting
Polynomial regression

0 10 20 30 40 50 60 70 80 90 100
Temperature - degC
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Predicted Density - kg/m3
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0.04
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0.08

0.1
Residuals vs. Fits Plot
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Curve-Fitting
Multilinear regression

Model       0 1 1 2 2, 1, , , 1, , , 1, ,j j k k jy f x j m f x j m f x j m             

  1, , , , 1, ,i i miy x x i n 
Dataset

 T TX X b X y

Normal equations

Fitted model parameters

  1T T
b X X X y

Minimize V by choice
of      via calculusβ̂
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Curve-Fitting
Multilinear regression
Example

Model 2 2
0 1 2 3 4 5w T w T wT           
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Curve-Fitting
Multilinear regression using vector-matrix calculations

NaClDensityRegressionMatrixCalcs.m
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Curve-Fitting
Multilinear regression using vector-matrix calculations
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Curve-Fitting
Multilinear regression using vector-matrix calculations

Model coefficients

0.95 1 1.05 1.1 1.15 1.2 1.25
Density Data - g/cm3

0.95

1

1.05

1.1

1.15

1.2

1.25

Agreement between predicted 
and measured values
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Curve-Fitting
Multilinear regression using vector-matrix calculations

0.95 1 1.05 1.1 1.15 1.2 1.25
Predicted Density

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 10-3 Residuals vs. Fits

Errors < 0.001
No significant pattern
Model appears to
be adequate
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Curve-Fitting
Multilinear regression using the MATLAB fitlm function

NaClDensityRegression.m
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Curve-Fitting
Multilinear regression using the MATLAB fitlm function

Can also perform
step-wise regression
with function
stepwiselm
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Curve-Fitting
Nonlinear regression
Model:  ,y f x β   1, , , , 1, ,i i miy x x i n 

 ˆ, e y f x β
min
ˆ

Te e
β

using an optimization routine

Dataset:

 

 
 

 

1

2,

n

f
f

f

 
 
 
 
 
  

x
x

f x β

x

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Curve-Fitting Nonlinear regression

Example: fitting the Antoine equation to
vapor pressure data

10log V
BP A

C T
 


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Curve-Fitting Nonlinear regression

H2SO4AntoineEqn.m
Antoine.m
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Curve-Fitting Nonlinear regression
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Curve-Fitting Nonlinear regression

0 50 100 150 200 250 300
Temperature - degC

-3

-2

-1

0

1

2

3
Vapor Pressure of Concentrated H2SO4 Solutions
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MATLAB – What’s Next?

Bootcamp 3

 1: Getting up to speed (or back up to speed) with MATLAB
 2: Learning to use MATLAB to solve typical problem scenarios
• 3: Detailed modeling of packed-bed and plug-flow reactors

“Prof. Clough, 84
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