
Python Bootcamps 1, 2 and 3
• 1: Getting up to speed with Python
• 2: Learning to use Python to solve typical problem scenarios
• 3: Detailed modeling of packed-bed and plug-flow reactors

1

Bootcamp 1 Outline
• Installing the Integrated Development Environment 2
• Exploring the Spyder IDE 3
• Using the IPython Console for calculations 4
• Variables and mathematical functions 5
• Relational and logical operators 7
• Collections of data 8
• Creating simple plots 14
• Using the Spyder Editor and getting help 15
• Input/output 29
• Plotting with Matplotlib’s pyplot 33
• Program structure and user-defined functions 59
• Arrays and matrix operations 83

Slide Number

Installing the Integrated Development Environment (IDE)
There are several popular Python IDEs. These choices are beneficial, but they
also present a problem. We have to choose one here. That will be the Spyder IDE
because it is well suited to engineering and scientific computations, and it has an
interface similar to MATLAB. Once we get into the details of Python, you can use
any other IDE – you will just have to adapt to the Spyder illustrations used here.

The Spyder IDE and corresponding Python programming language with common
supporting modules are conveniently available at no cost by installing the
Anaconda package. This is available via the URL: https//www.anaconda.com/distribution/
The Anaconda package includes numerous open-source software packages among them
Spyder, which will appear with the icon

Once installed and launched, you can
run Spyder without starting Anaconda
and add its command icon to your
display and/or taskbar.

Periodically, you can update
the Spyder and Python
versions via the Anaconda
interface.

2

3

Exploring the Spyder IDE

Spyder Editor Window

IPython Console Window

Explorer Window with Tabs

Menu commands

Toolbar commands

Folder path

4

Using the IPython Console for Calculations
Arithmetic Operators
+ addition
 subtraction and negation
* multiplication
/ division (floating point)
// division (integer)
% modulus (remainder)
** exponentiation

Priority Order (precedence)
** highest
 (negation) 
*, /, //, % 
+,  (subtraction) lowest

Evaluation left to right
except repeated exponentiation returns previous command

Examples

left-to-right
evaluation

/ takes place
first

integer
division

modulus
(remainder)

repeated **
right-to-left

5

Variables and Mathematical Functions
Assignment

Notice a and A are different variables.
a and A are integer type (int)
b is floating point (float)

Other data types

character (or string) type

Boolean or T/F type
complex type

6

Built-in Functions

Uh, oh!
No sqrt function

Very few math
functions directly
available in Python:
abs() and round()

import the math module
for commonly used math functions
notice format: math.name()

math module includes
sin, cos, tan sinh, cosh, tanh built-in constants
asin, acos, atan asinh, acosh, atanh pi inf
exp, log e nan

all referenced with
math.name

Variables and Mathematical Functions

The math module functions
only operate on single
quantities, not arrays. Later,
we will use the numpy
module that has similar
functions that do operate
on arrays.

7

Relational and Logical Operators
Relational Operators
== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to

Logical Operators
(from highest to lowest precedence)
not logical negation
and logical and
or logical or

Example

not False and True True and True

not applied before and

8

Collections of Data
List collection of various data types, [...]

Tuple an immutable list (cannot be extended,
shrunk, have elements removed or
reassigned), (...)

Set an unordered collection of unique
objects, {...}

Dictionary a collection of objects, each
identified by a key, {value pairs}

Array collection of a single data type indexed
by integer subscripts, provided by the
NumPy module

See examples on following slides.
Used extensively in numerical
methods and applied statistics.

9

Collections of Data

Variable Explorer

Indexing
[...]

Indices (or subscripts) are zero-based,
not one-based as in mathematical descriptions
and software packages such as MATLAB.
Excel/VBA is zero-based by default but can be
changed to one-based with the Option Base 1
declaration.

10

Collections of Data - Arrays
Arrays are created in a class called ndarray provided by the NumPy module.

We define np as an abbreviation of numpy
because we use it so frequently.

The NumPy array function (or constructor)
creates an array type from a list or a tuple.

• float64 indicates a numerical quantity is stored in 64 bits (8 bytes) according to
the IEEE standard (https://ieeexplore.ieee.org/document/8766229).

• int32 shows that these are integer quantities and are stored in 32 bits (4 bytes).

Note that the size (5,) includes a comma. This allows for a second set of indices
(a second dimension) to represent matrices.

11

Collections of Data - Arrays
Referring to individual elements of an array
with an index (or subscript):

Note zero-based indexing.

Use of the colon (:) in indexing.

Using zero-based indexing, we might expect [1:3] to return the 2nd through the 4th

element. Not so (sorry). The [i:j] subscript extracts the zero-based (i-1)th element up
to, but not including, the (j-1)th element.

[1:] selects from the 2nd element to the end

[:3] selects from the first element to the
index (3-1) or 3rd element

12

Collections of Data - Arrays
Array operations

Array operations are
carried out
item-by-item

NumPy’s built-in functions (sqrt here) work with arrays, item-by-item.
The Math module’s functions do not.

You cannot carry out array operations with lists or tuples. We use NumPy functions
more frequently than Math functions.

13

Collections of Data - Arrays
Two-dimensional arrays

Creating a two-dimensional array from a two-dimensional list:

Double-click X in the Variable Explorer

Array operations are valid
with a two-dimensional
array

14

Creating Simple Plots
Matplotlib module and its pyplot submodule

Create x and y arrays and
a scatter plot of y versus x

In order to customize the plot, we
cannot enter additional commands
into the Console, rather we must
build a script in the Editor window.

15

Using the Spyder Editor and Getting Help
For most Python tasks involving multiple commands, we prefer to enter
those as a script in the Editor window.

Here is an example that creates a plot of two y arrays versus an x array.

Enter this into the Editor window.
Click the Save file button (or Ctrl-S).

Browse to a folder of your choice and
save the script as firstplot.py
(the py will be added by default)

Run the script with the
Run button (or F5). See the resulting plot on the next slide.

16

Using the Spyder Editor and Getting Help

This plot should appear in the Explorer
window, Plots tab.

We will get to more details about plotting
a bit later.

For now, we concentrate on the Editor.

17

Using the Spyder Editor and Getting Help
Error diagnostics – syntax errors

remove the right parenthesis,)

a red X appears on the line

if the mouse pointed is hovered
over the X, an informative
error message is displayed

make a typographical error by
entering z instead of x

error message is on point

18

Using the Spyder Editor and Getting Help
Error diagnostics – warnings

orange triangle

indicates the math module has been
imported but its routines were not used (yet)

19

Using the Spyder Editor and Getting Help
Debugging code for execution errors

These errors show up when the script is run.
A typical technique is to single-step the code and observe variable
values in the Explorer window.

To start Debug mode for single-stepping,

Note Ctrl-F5 shortcut

or

arrow appears next to first statement
execution is stopped there

Advance execution with Ctrl-F10 or

20

Using the Spyder Editor and Getting Help
Debugging code for execution errors
Single-step past the x = ... statement and Variable Explorer shows

Stop debugging mode with

Continue execution (no single-stepping) with

Place a breakpoint. Execution will stop there.

Clear a breakpoint by clicking on the red dot,
also clear all breakpoints with
on the Debug menu

21

Using the Spyder Editor and Getting Help
Adding comments to scripts

Start with #

Either on their own line or
appended to a line of code

Comments are useful and recommended, especially for scripts that
will be seen and used by others. They also serve as a good reminder
for the author after not seeing the script for some time.

firstplot_withcomments.py

22

Using the Spyder Editor and Getting Help
Creating a new file in the Editor

or

By default, initial script window shows
a comment set off by # and a template
for a docustring between """
These can be deleted or edited.

Save the new file with an appropriate
filename via Save As.

23

Using the Spyder Editor and Getting Help

Saving and closing files
If changes have been made to a file, the name shows
with an asterisk (*). That is a reminder that the file
should be saved with

Close a file by clicking the X on its tab. If it
needs to be saved, a reminder will appear.

Variables will accumulate in the Explorer window. You can clear the
window with

24

Using the Spyder Editor and Getting Help
Changing Spyder settings

Many settings are available for
customization.

25

Using the Spyder Editor and Getting Help
“Flavors” of help
• Recalling arguments to built-in functions
• Finding information on a function or feature
• Getting the answer to “How do I . . . in Python?”

Tooltips that appear while typing in a function:

26

Using the Spyder Editor and Getting Help
Hover the mouse pointer on a function or keyword and press Ctrl-I

Help appears in the
Explorer window

Note: The Spyder Help menu is not that helpful.

27

Using the Spyder Editor and Getting Help
Internet help on Python 3.11.3 Documentation (python.org)

28

Using the Spyder Editor and Getting Help
Internet help on NumPy, SciPy, and Matplotlib

NumPy user guide — NumPy v1.24 Manual

SciPy User Guide — SciPy v1.10.1 Manual

Users guide — Matplotlib 3.7.1 documentation

Internet help – asking a question

Welcome to Spyder’s Documentation — Spyder 5 documentation (spyder-ide.org)
Help on using Spyder

29

Input/Output
Get user response from the Console with the input function

Displaying a result in the Console with the print function

Result is a string
(text)

Result displayed in
full precision

30

Input/Output
Input from text files (.txt or .csv)

Example: AtlanticHurricaneHistory.csv

http://tropical.atmos.colostate.edu/Realtime/index.php?arch&loc=northatlantic

Note the use of the backslash (\)
as a line continuation character.Separate items on each

file record into distinct
array variables.

A comma (,) separates the
items on each file record,
as indicated by .csv

There is a NumPy savetxt function to write data to a text file.
There are load and save functions to read and write binary files.

31

Input/Output
Formatting output

{0:5.1f}

First value to be
formatted Field width

for the display

No. of decimal
places

f : floating point display

f floating point
d decimal (integer)
e exponent (scientific)
g general (f or e)

format is a “method” that applies to the preceding string “object”
tempC is an argument to the format method

32

Input/Output
Formatting output - examples

Notice use of alternate
string delimiter “. . .” to
preserve use of ‘ in
Planck’s.

g format chooses
e for micron and
f for millimeter

FormattingExamples.py

33

Plotting with Matplotlib’s pyplot
Plot of an analytical function

linspace function creates an array
of 100 equally spaced points
between 0 and 5 assigned to x

vectorized expression to compute
the y array from the x array

not required in the Spyder IDE
but may be required in other
Python implementations

plot_analytical_start.py

34

Plotting with Matplotlib’s pyplot
Customizing the plot – add grid and labels, change line color to black

Color codes
k black
b blue
g green
r red
c cyan
m magenta
y yellow
w white

35

Plotting with Matplotlib’s pyplot
Customizing the plot – change linestyle and line width

Abbreviations
c color
ls linestyle
lw line width

Linestyle Codes
- solid
-- dashed
: dotted
-. dash-dot

plot_analytical1.py

36

Plotting with Matplotlib’s pyplot
Plots of data with the scatter function

scatter will plot numerical lists
(not NumPy arrays here – could be)

Marker Codes
. point
o circle
+ plus sign
x x
D diamond
V del
^ triangle
s square

plot_glycol_data_starter.py

37

Plotting with Matplotlib’s pyplot
Plots of data – customizing markers on scatter plots

c interior color
edgecolors edges

plot_glycol_data.py

38

Plotting with Matplotlib’s pyplot
Plots of data – markers with lines using the plot function

Abbreviations
mec markeredgecolor
mfc markerfacecolor

plot_glycol_datalines.py

39

Plotting with Matplotlib’s pyplot
Plots of data – plotting more than one series with a legend

label field in plot command provides text
for legend function

SaltandMagClDensities.py

40

Plotting with Matplotlib’s pyplot
Plots of data – plotting more than one series

Adjusting legend position
Changing axis limits and tick intervals

NumPy arrange function
arange(start_value,end-value,interval)
last value is not included

SaltandMagClDensities_AxesTicks.py

41

Plotting with Matplotlib’s pyplot
Plots of data – plotting more than one series

right and left axes

Uses the twinx command to shift
to the right axis.

A disadvantage here is the lack of
a legend.

Twinaxes.py

42

Plotting with Matplotlib’s pyplot
Plots of data – plotting more than one series

right and left axes

Adding a legend is possible,
but it is complicated.
Sorry about that.

Twinaxeswithlegend.py

43

Plotting with Matplotlib’s pyplot
Using figure window objects

plt.figure() creates a figure window object

fig.add_subplot(121) specifies 1 row and 2 columns
of subplots and IDs the first with the 3rd argument
and creates an axes object, ax1

the following commands have the syntax:
object.method
e.g. ax1.plot . . .

fig.add_subplot(122) IDs the second subplot in
the 1-by-2 arrangement
and creaes an axes object, ax2

Notice the set_ part of the label and title methods.

figure_windows_example_starter.py

44

Plotting with Matplotlib’s pyplot
Using figure window objects

Resulting plot --
subplots crowd each other

45

Plotting with Matplotlib’s pyplot
Making adjustments to subplots
adding space between the subplots

46

Plotting with Matplotlib’s pyplot
Making adjustments to subplots
changing the aspect ratio of the figure window

figure_windows_example.py

47

Plotting with Matplotlib’s pyplot Bar charts - histograms

Uses the NumPy histogram function.
Selects 9 bins at intervals of 0.25.
Function returns bin counts (frequencies)
and bin edges.

Creates an array of bin centers using a
for loop (more on that later).
Uses the NumPy bar function to create
the chart.
Adds grid lines in the y direction only.
Sets tick values for the x asis, rotated.

Reads data in from a text file.
Calculates and displays sample statistics
using NumPy functions and the Python
len function.

ConcentrationHistogram.py

48

Plotting with Matplotlib’s pyplot
Bar charts - histograms

Note: With 197 data, appropriate number of bins
should be in the range   

 
2int log 197 1 8

int 197 14

 



49

Plotting with Matplotlib’s pyplot
Bar charts – a Pareto chart based on categories

windpower_ParetoChart.py

50

Plotting with Matplotlib’s pyplot
Plots with logarithmic scales Plot with linear scales

The largest to smallest vapor pressure are
a ratio of 800 to 1. Suggests a logarithmic
vertical scale.

VaporPressureH2O_starter.py

51

Plotting with Matplotlib’s pyplot
Plots with logarithmic scales

Use the semilogy function
instead of plot.

Alternate functions are
semilogx
and
loglog

VaporPressureH2O.py

52

Plotting with Matplotlib’s pyplot
Contour and surface plots

contour plot of an analytical function

Create x and y arrays with 50 elements each.
Create a 50x50 meshgrid in X and Y arrays.
Evaluate function at each grid point.

Create contour plot with contours at 75.,...
Label the contours with their z values.

ContourAnalytical.py

53

Plotting with Matplotlib’s pyplot
Contour and surface plots

contour plot of an analytical function

54

Plotting with Matplotlib’s pyplot
Contour and surface plots

filled contour plot of an analytical function
ContourFilledAnalytical1.py

55

Plotting with Matplotlib’s pyplot
Contour and surface plots

contour plot based on data

NaClDensityContourPlot.py

56

Plotting with Matplotlib’s pyplot
Contour and surface plots

contour plot based on data

57

Plotting with Matplotlib’s pyplot
Contour and surface plots

wireframe plot based on an analytical function

Warning here is false.
This module is required.
Sorry.

stride arguments indicate data count
intervals for mesh lines

SurfaceMeshAnalytical.py

58

Plotting with Matplotlib’s pyplot
Contour and surface plots

wireframe plot based on
an analytical function

SurfaceAnalytical.py

59

Program Structure and User-defined Functions

Overall program structure – sequential flow

60

Program Structure and User-defined Functions
Selection structures: one-way and two-way if

if condition:
statements

Sgnx2 = x**2
if x < 0:

Sgnx2 = ‐Sgnx2

Sgnx2 = x**2
if x < 0: Sgnx2 = ‐Sgnx2

or one-line version

if condition:
statements1

else:
statements2

indent must be 4 spaces

if x < 0:
Sgnx2 = ‐ x**2

else:
Sgnx2 = x**2

Note: There is no end statement.
The structure is terminated when
the indentation is removed.

61

Program Structure and User-defined Functions
Selection structures: multialternative if

if condition1:
statements1

elif condition2:
statements2



elif condition_n:

statements_n
else:

else statements

The else clause is not required.

62

Program Structure and User-defined Functions
Selection structures: multialternative if
Example: Type J thermocouple, temperature vs voltage

Type J is the most common thermocouple.
Type J materials are iron and constantan.
Constantan is an alloy, 55% Cu and 45% Ni.

Thermocouples are the most common
devices for industrial temperature
measurement.

 h cV T T dT   Tc : reference junction temperature, known or controlled

TypeJ_TC.py

63

Program Structure and User-defined Functions
Selection structures: multialternative if
Example: Type J thermocouple, temperature vs voltage

Note: This script doesn’t protect adequately for erroneous user input.
We will consider that later.

64

Program Structure and User-defined Functions
Repetition structures: the general loop

Python implementation – while loop

while condition:
loop statements

Loop repeats as long as condition is True.
Adapt this structure for the general loop:

while True:
pre‐test statements
if condition: break
post‐test statements

Pre-test or post-test statements may be
absent (not both!).
Similar adaptation as with MATLAB.

65

Program Structure and User-defined Functions
Repetition structures: the general loop
Typical application: input validation

while True:
acquire input value
if input is valid: break
print error/corrective message

Input validation for
the thermocouple calculation

TypeJ_TC_with_input_validation.py

66

Program Structure and User-defined Functions
Repetition structures: list-driven and count-controlled loops

67

Program Structure and User-defined Functions
Repetition structures: list-driven loop for variable in [list]:

loop statements

Use of the range type to generate a list
range(start,end,step)

If start left out, = 0
If step left out, = 1

last item, 12
left out

Examples:
range(10) 10 integers 0,1,2,...,9
range(n) n: integer variable, list from 0 to n-1
range(1,11) 10 integers from 1 to 10
range(0,11,3) list of integers, [0, 3, 6, 9]

SimpleListLoop.py

68

Program Structure and User-defined Functions
Repetition structures: count-controlled loop
Examples:

Use of for loop variable as an array
index (or subscript)

i is the row index
j is the column index
for the 3x3 array X

Nested for loops

for_loop_example.py

nested_for_loops_example.py

69

Program Structure and User-defined Functions
Repetition structures: the break statement

Example: Building an array with user input

Start with an empty array.
Exit loop when entry is = -9999.
Otherwise, expand testdata by
appending entry.

sentinel_break.py

70

Program Structure and User-defined Functions
Repetition structures: the continue statement

Example: Sifting positive random numbers

Start with an empty testdata array.
In for loop, generate a random
number (standard normal distribution).
If number is negative, do not store –
continue next iteration.
If number is positive or zero, append
to testdata array.
Create histogram of testdata array.

Uses the random module

random_continue.py

71

Program Structure and User-defined Functions

def function_name(argument list):
statements
return results

Function must be “run” before it is invoked.
Can be invoked in the Console window or
in statements below it.
Can store function(s) in separate .py file
and import them.

sgnsqr_function.py

72

Program Structure and User-defined Functions
lambda anonymous functions

Abbreviating a def function

Without the a and b arguments:

Then, a and b must be provided
explicitly in the main script.

lambda_example1.py

73

Program Structure and User-defined Functions
Function Arguments

A function with no arguments

Adding two arguments

functionwithnoarguments.py

functionwithtwoarguments.py

74

Program Structure and User-defined Functions
Function Arguments

Keyword arguments with default values

If no arguments specified, default values used.

Can specify arguments by name in any order.
Default value used for argument left out.

functionwithkeywordarguments.py

75

Program Structure and User-defined Functions
Function Arguments

Array arguments
Example: percentile value of an ordered array

x in ascending order

x in any order
sorted into y

percentile1.py

percentile2.py

76

Program Structure and User-defined Functions
Function Arguments

Function invoked from within another function – interquartile range, iqr

iqr.py

77

Program Structure and User-defined Functions
Function Arguments

Arguments that are names of other functions

The first argument is a “dummy” name, func,
for a function to be supplied.
The second argument, x, is an array of values.
The average of the func(x) values is returned.

The lambda function f is the first argument and
50 values of x from -10 to 10 are supplied.

functionfunction.py

78

Program Structure and User-defined Functions
Function Arguments

Arguments that are names of other functions
with pass-through arguments - *args

The funavg function is still generic but
allows for one or more extra arguments
to be passed through to the func
evaluations.

The extra arguments are included in the
call to funavg and defined in the lambda
definition.

functionfunctionwithpassthrough.py

79

Program Structure and User-defined Functions
Function Arguments

Arguments that are names of other functions
with pass-through keyword arguments - **kwargs

Identify potential keyword arguments with
**kwargs
Note: two asterisks, **

Include keyword arguments for mu and sig
with default values.

Specify only the sig value. The mu value will
be its default, 0.

functionfunctionwithpassthroughkeywords.py

80

Program Structure and User-defined Functions
Function Arguments

Generally, the order of arguments supplied to a function must
agree with the order in the function definition (def or lambda).

Pass-through arguments, *args and **kwargs, must follow other
arguments.

Any *args must agree in order with their function definition.

Keyword arguments can be supplied partially and in any order.

Common practice is to define *args and then **kwargs.

81

Program Structure and User-defined Functions
Variable scope

The variables a and b are local
to function func.
They can’t be “seen” from the
main script.
For this reason, there are errors.

But there is no problem when we
place the print command inside
the function.

So, variables local to a function
have local scope, and can’t be
referenced from outside the
function.

Note: arguments, also called
formal parameters, are not
local variables. They refer to
values/variables from where
the function is invoked.

scope1.py

scope2.py

82

Program Structure and User-defined Functions
Variable scope

When a and b are assigned in
the main script, their values
are seen and available from
within the function.
They have global scope.

The scope of a local variable
can be extended by the
global declaration.

scope3.py

scope4.py

83

Arrays and Matrix Operations
Creating NumPy arrays from lists and tuples.

1x4 row vector

2x2 matrix

4x1 row vector

In Python terminology, the dimensions of an
array are called axes.
a has a single axis
A has two axes
b has four axes

convert_list_to_array.py

84

Arrays and Matrix Operations
Creating special arrays – zeros and ones functions

Notice that only one set of parentheses
is required for a row array of zeros (a single axis).

(5,1) is required for a column array of ones

zeros_function.py

85

Arrays and Matrix Operations
Creating special arrays – eye function

Identity matrix

eye_function.py

86

Arrays and Matrix Operations
Combining and stacking arrays

Vertical stack

Horizontal stack

stack_examples.py

87

Arrays and Matrix Operations
Splitting arrays

Split arrays using vsplit
and hsplit must be of
equal size.

Can carry out splits of
unequal size using
indexing (later).

88

Arrays and Matrix Operations
Reshaping arrays
Flattening an array onto a single axis

flatten is a method that is applied to the array object.
It is Python-based, not NumPy. The dimensions of A
are not changed.

Providing a different view of an array using ravel method.

This is tricky!
(and we don’t
use it that
frequently)

A

Modifying an element of b
also modifies the corresponding
element of A. b is just a different
view of A, but they share the
same memory.

reshape_examples.py

89

Arrays and Matrix Operations
Reshaping arrays

Notice that this is not
a transpose. reshape essentially
flattens the array and then reshapes it.

There is a resize method that changes the view of the array,
similar to the ravel method.

reshape_examples1.py

90

Arrays and Matrix Operations
Indexing arrays

       

       

       

0,0 0,1 0,2 0,311 12 13 14

21 22 23 24 1,0 1,1 1,2 1,3

31 32 33 34 2,0 2,1 2,2 2,3

x x x xx x x x
x x x x x x x x
x x x x x x x x

               

typical mathematical subscripts corresponding Python indices

Examples

Note: result shown as a row

2nd row, 3rd element

3rd element

2nd and 3rd element (not the 4th)

IndexingExamples.py

91

Arrays and Matrix Operations
Indexing arrays

rows 2 and 3
columns 2 and 3

Indexing with for loop variables

range(2) [0,1]

range(3) [0,1,2]

subscripts align properly
with the use of the range type

IndexingExamples2.py

IndexingExamples3.py

92

Arrays and Matrix Operations
Array operations

divide by 3 applies to each element
of the array

arrays added, item by item
size must be the same

“vectorizing” a polynomial
calculation

array_operations_1.py

array_operations_2.py

array_operations_3.py

93

Arrays and Matrix Operations
Array operations

Math module functions do not accept arrays.

NumPy module functions do.

array_operations_4.py

array_operations_5.py

94

Arrays and Matrix Operations
Array operations

for loop with item-by-item versus vectorized calculation

95

Arrays and Matrix Operations
Vector/matrix operations

Matrix multiplication

96

Arrays and Matrix Operations
Vector/matrix operations

Matrix multiplication – home-grown function

Use the shape property to get numbers
of rows and columns.

Nested for loops:
ith row of A
jth column of B
sum the A*B products

matmult_example.py

97

Arrays and Matrix Operations
Vector/matrix operations

Matrix multiplication – home-grown function

3 x 2 * 2 x 3  3 x 3

Matrix multiplication – using the dot method
same result
compact, preferred

98

Arrays and Matrix Operations
Vector/matrix operations

Matrix transpose

rows become columns
and vice versa

using the transpose method

transpose_example.py

99

Arrays and Matrix Operations
Vector/matrix operations

Matrix inversion using the inv function in the NumPy linalg submodule
1 A A I

The A matrix created above is called a Hilbert matrix of order n.
Computation of the inverse of a Hilbert matrix is notably difficult.

Numerically “close” to
the identity matrix

matrix_inverse_example.py

100

Python Bootcamps 1, 2 and 3
• 1: Getting up to speed with Python
• 2: Learning to use Python to solve typical problem scenarios
• 3: Detailed modeling of packed-bed and plug-flow reactors

What’s next?

“Prof. Clough,

Reference:
Introduction to Engineering and
Scientific Computing with Python
David E. Clough
Steven C. Chapra
CRC Press, Taylor & Francis, 2023.

