
• Process modeling & numerical characteristics
• Algebraic models

o Single, nonlinear, including polynomials
o Linear sets
o Nonlinear sets

• ODE models
o Initial value problems
o Split boundary problems

• Optimization
• Curve-fitting 1

Bootcamp 2 Outline

Python Bootcamps 1, 2 and 3
 1: Getting up to speed with Python
• 2: Learning to use Python to solve typical problem scenarios
• 3: Detailed modeling of packed-bed and plug-flow reactors
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Process Modeling

Process
Model

Basic
Data

Operating
Conditions

Numerical
Methods

Process
Performance

Operating
Data

Model
Adjustment

Comparison

Often not possible at the design stage.
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Process Modeling
Developing the Process Model

Conservation Balances
• Material
• Energy

o Mechanical/Momentum
o Thermal

• Thermodynamics
o Equilibrium, Phase and Chemical
o Heat Transfer

• Mass Transfer
• Separations
• Reaction Kinetics
• Monitoring and Control

Equipment
• Vessels

o Tanks, Drums
o Columns
o Reactors

• Heat Exchangers
• Piping, Valves, Fittings
• Pumps, Compressors
• Columns
• Reactors
• Solids-handling

o Crystallization
o Filtration

• Instrumentation
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Numerical Characteristics

• Algebraic equations
o Nonlinear, one or more
o Linear sets

• Differential equations
o Ordinary (ODEs)
o Partial (PDEs)

• Optimization
• Curve-fitting

when combined:
Differential-Algebraic
Systems (DAEs)
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Examples Considered
• Single, nonlinear algebraic equation

o water-gas shift equilibrium
• Set of linear algebraic equations

o absorber column
• Set of nonlinear algebraic equations

o steam/water equilibrium
• Single nonlinear ordinary differential equation

o batch reactor, single reaction
• Set of nonlinear ordinary differential equations

o batch reactor, multiple reactions
• Optimization

o single factor
o multiple factors with constraints

• Linear Regression
o polynomial
o general
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Solving Single Algebraic Equations

  0f x 

• Bracketing methods
o Bisection
o False position

• Open methods
o Newton-Raphson
o Modified secant

• Hybrid
o Brent’s method

• Circular scenario
o Substitution
o Wegstein method

 x g x

For details and Python code on all these methods, see Chapra and Clough,
Applied Numerical Methods with Python for Engineers and Scientists, McGraw-Hill, 2022.
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Solving Single Algebraic Equations - Bisection

First iteration Second iteration
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Solving an Algebraic Equation with Bisection

docustring

bisect1.py
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Example       1 2sin 2 cosh 2 0 0 3f x x x x x      

Solving an Algebraic Equation with Bisection
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Solving an algebraic equation with SciPy brentq
function from the optimize submodule

xs = brentq(f,x1,x2) f  :  function name
x1,x2 :  initial estimates that bracket the solution

Example       1 2sin 2 cosh 2 0 0 3f x x x x x      

brent1.py
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Solving an algebraic equation with SciPy brentq
function from the optimize submodule

full output option
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Example:  water-gas shift equilibrium 2 2 2CO H O H CO  

   
     2 2

eq
2

H CO
K T

H O CO





 eq
3317ln K T 3.112
T

       T K

Feed
kmol/hr

H2 450
CO 500

CO2 50

H2O 1150

T = 1200 °C
P = 1 atm

 
 

 2 2

2

H CO
eq

H O CO

Feed x Feed x
f x K T 0

Feed x Feed x

          
    

where     is the shift to
equilibrium in kmol/hr.

x

Solve for     and the reactor product flow rates for the given temperature.x

Equilibrium
Reactor

Product
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Setting up a function to compute f(x)

Water-gas shift equilibrium

Plot shows solution x = ~170

watergasplot.py
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Setting up a function to compute f(x)
including temperature and feed rates as arguments

Water-gas shift equilibrium

Case study of equilibrium flow rates for a range of temperatures
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Water-gas shift equilibrium
Passing extra arguments through a built-in function

Main script
Set T and Feed rates
Set x1 and x2

xsoln = brentq(f,x1,x2,args=(...))

function f with arguments
x, T, Feed rates

need to get these values “through”
brentq to f using

args=(...)
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Water-gas shift equilibrium
Case study for a range of temperatures with a plot Use NumPy append function here

to extend arrays instead of creating
zero-filled arrays.

watergas_solve.py
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Water-gas shift equilibrium
Case study for a range of temperatures with a plot
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Solving for the Roots of Polynomials

1
1 1 0 0n n

n na x a x a x a
    

General form for nth-order polynomial

will have n roots, either real or complex conjugate pairs, j j    
4 3 28 3 62 56 0x x x x    Example:

2 1 0x x  Example:

NumPy function roots

polynomial_example.py
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Solving for the Roots of Polynomials
Composing the polynomial from its roots, NumPy poly function

Evaluating a polynomial to create a plot

polynomial_example2.py
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Solving Sets of Linear Algebraic Equations

11 1 12 2 1n n 1

21 1 22 2 2n n 2

n1 1 n2 2 nn n n

a x a x a x b
a x a x a x b

a x a x a x b

   
   

   






11 12 1n 1 1

21 22 2n 2 2

n1 n2 nn n n

a a a x b
a a a x b

a a a x b

     
     
      
     
     
     




     


 A x b

n equations in n unknowns

Solving the equations:
1. matrix algebra and computations

2. more efficient numerical method
• Gaussian elimination with enhancements
• LU decomposition

1 1    A A x A b
1  I x A b
1 x A b compute the inverse of A

and multiply it by b
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Solving Sets of Linear Algebraic Equations
Example 3 2 10

3 2 5
1

x y z
x y z
x y z

  
   

   

3 2 1 10
1 3 2 5
1 1 1 1

x
y
z

     
            
            

A-1*b  not recommended, inefficient

using the solve function
in the NumPy linalg submodule

The solve function is adapted from the LAPACK
package gesv routine and uses LU decomposition
with partial pivoting.

simple_linear_set_linalg_solve.py
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Solving Sets of Linear Algebraic Equations

Example problem:  Six-stage absorber column

G , y1L , x0

G , y7L , x6

1

2

3

4

5

6

i iy ax b 
Equilibrium relationship
on tray i

x0 , y7 , L and G specified

i 1 i 1 i iL x G y L x G y       

Component material balance on tray i

Incorporate equilibrium relationship
 i 1 i i 1L x L G a x G a x 0         
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Solving Sets of Linear Algebraic Equations
Example problem:  Six-stage absorber column

G , y1L , x0

G , y7L , x6

1

2

3

4

5

6

    

   

   

   

   

    

L Ga x Gax Lx

Lx L Ga x Gax

Lx L Ga x Gax

Lx L Ga x Gax

Lx L Ga x Gax

Lx L Ga x G y b

b g
b g
b g
b g
b g
b g b g

1 2 0

1 2 3

2 3 4

3 4 5

4 5 6

5 6 7

0

0

0

0

Write component material balances for each tray and rearrange
with unknowns on the left and knowns on the right.

This represents a set of six linear equations in the six unknown
mass fractions.

Basic data:   equilibrium model:   a =  0.7,   b = 0
Operating conditions: L = 20 mol/s,   G = 12 mol/s

Inlet gas mole fraction:  y7 = 0.1
Inlet liquid mole fraction:  x0 = 0
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Solving Sets of Linear Algebraic Equations
Example problem:  Six-stage absorber column

Absorber.py
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Solving Sets of Nonlinear Algebraic Equations
 
 

 

1 1 2 n

2 1 2 n

n 1 2 n

f x ,x , ,x 0

f x ,x , ,x 0

f x ,x , ,x 0













  f x 0or

Common solution technique:  Newton’s Method
Start with an initial estimate of the solution: 0x
Iterate with    i 1 i 1 i i   x x J x f x until a convergence criterion is met.

1 1 1

1 2 n

2 2 2

1 2 n

n n n

1 2 n

f f f
x x x
f f f
x x x

f f f
x x x

   
    
   
     
 
    
    

J





   



Jacobian
matrix or, where analytical derivatives are difficult:

     i i i i i i
1 1 2 n 1 1 2 ni1

1

f x ,x , ,x f x ,x , ,xf
x 2

 



  


 
x

 

and so forth.
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A Python function for Newton’s method:  multinewt
Solving Sets of Nonlinear Algebraic Equations

f : function to evaluate equations’ errors
J:  function to provide the Jacobian
Ea:  relative error criterion for convergence
maxiter:  maximum number of iterations
decel:  decelerator, if needed for stability

• xnew computed with the Newton formula using dot method
• xdev is a vector of x differences from last iteration to this one
• xerr is sum of squares of xdev elements (inner product with dot)
• function returns the latest xnew and number of iterations
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Solving Sets of Nonlinear Algebraic Equations
Solution with function multinewt

Example 2 2 4 0
1 0

x y
x y
  
  

2 2x y
y x

 
  
 

J

MultiNewton.py
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Solving Sets of Nonlinear Algebraic Equations
Solution with the root function from the SciPy optimize submodule

Example 2 2 4 0
1 0

x y
x y
  
  

x = root(f,x0) without supplying J (Jacobian approximated numerically)

There is an option to
allow the Jacobian
matrix to be supplied.

root returns a solution object, result
x is the solution – result.x is the property of result

root_function_example.py
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Solving Sets of Nonlinear Algebraic Equations
Example problem:  steam/water equilibrium

 mP V R T 273.15
MW

     10
Blog P A

T C
 



ideal gas law Antoine equation
P : absolute pressure, Pa
V : vapor volume, m3

m : mass of vapor, kg
MW : H2O molecular weight,  18.02 kg/kgmol
R : gas law constant,  8314 (Pam3)/(kgmolK) 
T : temperature, °C

A,B,C : Antoine constants for H2O
A 11.21 B 2354.7 C 280.71  

Operating conditions: m 3.755 kg 3V 3.142 m

Solve for       and       .P T
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Solving Sets of Nonlinear Algebraic Equations
Example problem:  steam/water equilibrium

Formulating the problem for solution

   

 

1

2 10

mf T ,P P V R T 273.15
MW

Bf T ,P log P A
T C

     

  
    2

mV R
MWP

1 BT
ln 10 P C T

                 

J

analytical
Jacobian
practical
in this case

A possible issue here is the comparative scaling of the two equations.
Typical values for the PV term could be of magnitude 106; whereas,
terms in the second equation are closer to unity.  A practical approach
to this is to scale the first equation by dividing it by, e.g., 100,000.

   

 

1

2 10

mf T ,P P V R T 273.15 100000
MW

Bf T ,P log P A
T C

       
 

  
    2

mV 1e5 R 1e5
MWP

1 BT
ln 10 P C T

              
   

J
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Solving Sets of Nonlinear Algebraic Equations
Example problem:  steam/water equilibrium

SteamEquilbrium.py
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Solving Single Differential Equations
Two types

 dy f t
dt



 ,dy f t y
dt



 
0 0

0
f fy t

fy t
dy y y f t dt   

finding the area under the curve
or quadrature

generally, analytical solutions 
are not feasible

numerical methods
used to solve
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Solving Single Differential Equations
Quadrature – Analytical function

Trapezoidal rule

             2 2 2 2 1
2

b

a

hf t dt f a f a t f a t f a n t f b              
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Solving Single Differential Equations
Quadrature – Analytical function

   
2

0
cos cosdy t t y t t dt

dt


     
Python function for trapezoidal rule, trap
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Solving Single Differential Equations
Quadrature – Analytical function

– quad function from the SciPy integral submodule

       
21

21
2

az dPf z e f z P z a f z dz
dz 


        

Standard normal distribution – cumulative probability

quad_example.py
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Solving Single Differential Equations
Quadrature – Data
SciPy function trapz from the integrate submodule

trapz_example.py
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Solving Single Differential Equations

    0, 0dy f t y y y
dt

 

Initial Value Problem

Example

   25 0 0.08 0 5dy y t y t
dt

    

There is an analytical solution:
2 0.4 0.08y t t  
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Solving Single Differential Equations
Initial Value Problem

Example using solve_ivp Numerical solution blows up!

parasite.py
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Solving Single Differential Equations
Initial Value Problem
Example using solve_ivp with tightened tolerances

numerical and analytical
solutions coincide

parasite1.py
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Single Equation Example – Isothermal Batch Reactor A B C 

Rate of disappearance of A: A
A B

dC k C C
dt

   

Initial conditions:

k

 A A0C 0 C  B B0C 0 C  C C0C 0 C

Basic data: 1 1k 14.7
mol L min

 

Initial conditions: A0
molC 0.0209
L

 B0 A0C C 3 C0C 0

Stoichiometric relationships:     B B0 A0 AC t C C C t  

    C C0 A0 AC t C C C t  

Solving Single Differential Equations
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Single Equation Example – Isothermal Batch Reactor
Information Flow Diagram

B

A
A

dC k C C
dt

    0 0B B A AC C C C  
AC

0AC k
0AC0BC

0C A AC C C 

0AC

Integrator

Solving Single Differential Equations
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Single Equation Example – Isothermal Batch Reactor
Solving Single Differential Equations

SimpleBatch.py



43

Solving Multiple Differential Equations
Example

 

 

21
1 1 2 1

22
1 2 2 2

2 2 1 0 2

3 2 2 0 0

dx x x x x
dt
dx x x x x
dt

     

     

twoODEs.py
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Multiple Equation Models – Isothermal Batch Reactor

A B C F
A C D F
A D E F

  
  
  

Svirbely, W.J., and J.A. Blauer, The Kinetics of Three-step Competitive Consecutive Second-order Reactions,
J. Amer. Chem. Soc., 83, 4115, 1961. 
Svirbely, W.J., and J.A. Blauer, The Kinetics of the Alkaline Hydrolysis of 1,3,5,Tricarbomethoxybenzene,
J. Amer. Chem. Soc., 83, 4118, 1961. 

1k

2k

3k

 

   

 

 

1 2 3

1

1 2

2 3

dA molk AB k AC k AD A 0 0.0209
dt L

A 0dB k AB B 0
dt 3
dC k AB k AC C 0 0
dt
dD k AC k AD D 0 0
dt

    

  

  

  

From stoichiometry:  A 0 A C 2D
E

3
  

 and  F A 0 A 

1

2

3

1 1k 14.7
mol L min
1 1k 1.53

mol L min
1 1k 0.294

mol L min

 

 

 

Solving Multiple Differential Equations
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Multiple Equation Models – Isothermal Batch Reactor
Information Flow Diagram

1 2 3
A

A B A C A D
dC k C C k C C k C C
dV

   
A

0F A A 

Integrator

1
B

A B
dC k C C
dV

  
B

1 2
C

A B A C
dC k C C k C C
dV

  
C

2 3
D

A C A D
dC k C C k C C
dV

  
D

0A A C 2DE
3

  


Solving Multiple Differential Equations
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Solving Multiple Differential Equations
Multiple Equation Models – Isothermal Batch Reactor

unpack y into
familiar variables

additional
arguments

compute
derivatives
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Multiple Equation Models – Isothermal Batch Reactor
Solving Multiple Differential Equations

unpack results

compute E and F
from A, C and D



48

Solving Multiple Differential Equations
Multiple Equation Models – Isothermal Batch Reactor

multibatch_reactor.py
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Solving Ordinary Differential Equations
Second-order differential equation with split boundary conditions

   
2

2

1 0 5 10 8 0 10
4

d y dy y y y t
dt dt

     

Decompose into two first-order ODEs

   1

1
1

0 5 10 8

1
4

dy y y y
dt
dy y y
dt

  

  “Shooting” Strategy
1. Estimate a value for y1 (dy/dt) at t = 0.
2. Solve the ODEs to t = 10
3. Check y(10) versus the required value, 8.
4. Adjust the y1(0) value and repeat steps 2 and 3

until the desired y(10)=8 value is obtained.
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Solving Ordinary Differential Equations
Second-order differential equation with split boundary conditions

Equations solved with an estimate for y1(0).
Clearly doesn’t meet the required final condition
y(10)=8.TwoPointBC.py
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Solving Ordinary Differential Equations
Second-order differential equation with split boundary conditions
Employ brentq to satisfy the final boundary condition

TwoPointBC1.py
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Solving Ordinary Differential Equations
Second-order differential equation with split boundary conditions
Employ brentq to satisfy the final boundary condition

Final condition, y = 8.,
is now met.

Final condition is very sensitive
to the initial derivative value.
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

   

   

c i i
h c c ci

c c

h o o
h c h hi

h h

dT h A T T T 0 T
dz w C
dT h A T T T L T
dz w C

  

  

i i
o

o

h Dh
D



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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

 z : distance down the heat exchanger from the cold fluid inlet (on the left) 
 L: length of the heat exchanger 
 cT : temperature of the cold fluid, a function of z  

 ciT : cold water inlet temperature, at z 0  

 hiT : hot water inlet temperature, at z L  

 hT : temperature of the hot fluid, a function of z  

 cw : mass flow rate of cold fluid 

 hw : mass flow rate of hot fluid 

 cC : heat capacity of cold fluid 

 hC : heat capacity of hot fluid 

 iA: inside area for heat transfer (cold fluid) per unit length 

 oA : outside area for heat transfer (hot fluid) per unit length 

 ih : inside heat transfer coefficient (cold fluid) 

 oh : outside heat transfer coefficient (hot fluid) 
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

The issue we have with solving these equations is that the cold stream boundary 
condition is at z = 0 and the hot stream boundary condition is at
z = L, the other end of the heat exchanger.  A practical way to handle this is to estimate 
the hot stream temperature at z = 0, proceed with the solution, and adjust that estimate 
later on to meet the condition at z = L.

   

   

c i i
h c c ci

c c

h o o
h c h hi

h h

dT h A T T T 0 T
dz w C
dT h A T T T L T
dz w C

  

  



56

Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger
Basic data and operating conditions
Outer tube
11 BWG
OD 2 in, ID 1.76 in

Inner tube
11 BWG
OD 1 in, ID 0.76 in

Length  5 m

Inlet temperatures
Hot stream  50 C
Cold stream  10 C

Fluid density (H2O)
988 kg/m3

Heat capacity (H2O)
4187 J/(kgC)

Hot stream flow rate  1 L/s
Cold stream  0.3 L/s

Heat transfer coefficient
hi = 14,000 W/(m2C)
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

Solve the model first with
an estimate for the hot stream
outlet temperature.

countercurrent_heatexchanger1.py
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

Hot stream inlet
condition, 50C,
not met.
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

Use the brentq function to adjust the hot stream outlet
temperature until the inlet hot stream condition is met. 

countercurrent_heatexchanger2.py
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger
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Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger

brentq adjusts Tho until Thi computed
meets the spec, Thi_spec
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50 C met

Solving Ordinary Differential Equations
Example: tube-in-tube, countercurrent heat exchanger
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Optimization
Finding a maximum or minimum of a function with a
single adjustable variable
Example

   2 2
1 1 6

0.3 0.01 0.9 0.04
y

x x
  

   

plothumps.py
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Optimization
Finding a maximum or minimum of a function with a
single adjustable variable - the Golden Section search

f(x)

x

a b

d

x1

d

x2

f(x2)
f(x1)

This is a bracketing method, similar to
bisection. The figure shows a curve f(x)
with a minimum between two initial
estimates, a and b. Instead of using the
midpoint between a and b, an overlapping
interval d is used to compute x1 and x2.
The interval is given by

where                  is the Golden Ratio (GR)

with the unique property

 
 5 1d b a

2


  

5 1
2


 1GR
1 GR



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Optimization
Finding a maximum or minimum of a function with a
single adjustable variable - the Golden Section search

f(x)

x

a b

d

x1

d

x2

f(x2)
f(x1)

For the figure to the right, we can see that

and that leads to the conclusion that the
minimum must be between x2 and b, and
the interval [a,x2] can be excluded.  This
implies that x2 becomes the new a for the
next iteration of the method.
If

the interval [x1,b] would be excluded and
x1 would become the next b.
For each iteration, the interval containing
the minimum is reduced by a factor of GR.

   2 1f x f x

   1 2f x f x

Any ratio other than GR that is greater than 0.5 and less than 1 could be used. The advantage of using the GR is that, 
for the first scenario above, x1 is the x2 value for the next iteration, avoiding the need to compute f(x2) then.
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Optimization
Python function to implement Golden Section search:

Additional script to solve for minimum
of humps function:

Because of the overlap coincidence, only one function
evaluation is needed for each iteration.
The d value is reduced by GR each iteration.  For 30
iterations, the original b - a is reduced by GR30  5x10-7. 

goldmin_1.py
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Optimization
Finding the minimum of a function with a single adjustable variable
Using the minimize_scalar function from the SciPy optimize submodule

determines a minimum well out of range
expected for x

the interval is bounded

the local 
minimum
is determined

minimize_humps.py
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Negate the function to determine a maximum

Optimization
Finding the maximum of a function with a single adjustable variable

Could restrict bounds to 0.8 – 1.0 to find local maximum there.

maximize_humps.py
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Optimization
Finding a maximum or minimum of a function with
multiple adjustable variables and one or more constraints
Using minimize function from SciPy optimize submodule

result = minimize(f,x0) f :  function of x, vector of variables
x0 : initial estimates of x values

options include different algorithms, bounds, and constraints

Example:   2 2
1 2 1 2 1 1 2 2 1 2, 2 2 2 2 0 0 3f x x x x x x x x x x          

minimize_example.py
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Optimization
Finding a maximum or minimum of a function with
multiple adjustable variables and one or more constraints

Example:
Optimal grain bin design

 3

max

10 m

20.4
cyl conV V V



  

 

Constraints

Minimize surface area
not including the top
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Optimization
Example:  Optimal grain bin design

Function definitions
grainbin.py
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Optimization
Example:  Optimal grain bin design
Main script Results

Most of the bin is the
conical part

Angle is at the constraint
Volume constraint met
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Curve-Fitting
Polynomial regression

coeff = polyfit(x,y,order)
y = polyval(coeff,x)

Example:  

polynomialfit.py
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Curve-Fitting
Polynomial regression

Coefficients from high to low order
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Curve-Fitting
Multilinear regression

Model       0 1 1 2 2, 1, , , 1, , , 1, ,j j k k jy f x j m f x j m f x j m             

  1, , , , 1, ,i i miy x x i n 
Dataset

 T TX X b X y

Normal equations

Fitted model parameters

  1T T
b X X X y

Minimize V by choice
of      via calculusβ̂
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Curve-Fitting
Multilinear regression
Example

Model 2 2
0 1 2 3 4 5w T w T wT           



77

Curve-Fitting
Multilinear regression using vector-matrix calculations

Prepare the dataset

MultilinearRegression.py
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Curve-Fitting
Multilinear regression using vector-matrix calculations

Form the X matrix and carry out the regression calculations

Model coefficients from left to right
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Curve-Fitting
Multilinear regression using vector-matrix calculations

Very close to perfect agreement Model appears to be adequate
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Curve-Fitting
Multilinear regression using the statsmodels module

MultiLinearRegressionStatsModels.py
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Curve-Fitting
Multilinear regression using the statsmodels module
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[ 1.00291293e+00  7.10909423e-03 -2.21137527e-04  2.68240071e-05
-2.08788409e-06 -6.01447754e-06]

OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       1.000
Model:                            OLS   Adj. R-squared:                  1.000
Method:                 Least Squares   F-statistic:                 6.543e+04
Date:                Thu, 01 Jun 2023   Prob (F-statistic):          9.06e-106
Time:                        16:22:12   Log-Likelihood:                 351.10
No. Observations:                  63   AIC:                            -690.2
Df Residuals:                      57   BIC:                            -677.3
Df Model:                           5                                         
Covariance Type:            nonrobust                                         
==============================================================================

coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          1.0029      0.000   2330.561      0.000       1.002       1.004
x1             0.0071   5.97e-05    119.130      0.000       0.007       0.007
x2            -0.0002    1.4e-05    -15.774      0.000      -0.000      -0.000
x3          2.682e-05   2.09e-06     12.829      0.000    2.26e-05     3.1e-05
x4         -2.088e-06   1.28e-07    -16.352      0.000   -2.34e-06   -1.83e-06
x5         -6.014e-06   3.99e-07    -15.057      0.000   -6.81e-06   -5.21e-06
==============================================================================
Omnibus:                        1.424   Durbin-Watson:                   0.825
Prob(Omnibus):                  0.491   Jarque-Bera (JB):                1.287
Skew:                          -0.342   Prob(JB):                        0.525
Kurtosis:                       2.850   Cond. No.                     1.70e+04
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.7e+04. This might indicate that there are
strong multicollinearity or other numerical problems.

Curve-Fitting
Multilinear regression using
the statsmodels module
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Curve-Fitting
Nonlinear regression
Model:  ,y f x β   1, , , , 1, ,i i miy x x i n 

 ˆ, e y f x β
min
ˆ

Te e
β

using an optimization routine

Dataset:

 

 
 

 

1

2,

n

f
f

f

 
 
 
 
 
  

x
x

f x β

x

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Curve-Fitting Nonlinear regression
Example: fitting the Antoine equation to
vapor pressure data 10log V

BP A
C T

 

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Curve-Fitting Nonlinear regression
Example: fitting the Antoine equation to
vapor pressure data

NonlinearRegression.py
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Curve-Fitting Nonlinear regression
Example: fitting the Antoine equation to
vapor pressure data

A = 9.806
B = 3902
C = 273.9
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What’s Next?

Reference:
Applied Numerical Methods

with Python
Steven C. Chapra
David E. Clough
McGraw-Hill, 2022

“Prof. Clough,
Python Bootcamps 1, 2 and 3
 1: Getting up to speed with Python
 2: Learning to use Python to solve typical problem scenarios
• 3: Detailed modeling of packed-bed and plug-flow reactors


