⟵ View all quiz screencasts

Thermodynamics 2 Quiz Screencasts

Each screencast has at least one interactive quiz during the video. The description above each video provides a brief summary. Click here to visit Thermodynamics 1 Quiz Screencasts.

Description: Shows how the chemical potentials of a solid and a liquid change at constant temperature as pressure increases over a narrow pressure range for a single-component. The different behaviors for water and ethanol are demonstrated.

Description: Shows how the chemical potentials of a solid and a liquid change at constant pressure as temperature increases over a narrow temperature range for a single component.

Description: Uses the information in a phase diagram to draw the temperature dependence on time as a binary liquid alloy is slowly cooled.

Description: Discusses the enthalpy departure function for a van der Waals fluid.

Description: Explains the equilibrium constant for an ideal gas and for a liquid.

Description: Describes how the Gibbs free energy, its departure function, and fugacity change with temperature for a single component.

Description: Discusses the effect of adding an inert gas at constant temperature to a chemical reaction at equilibrium at either constant pressure or constant volume.

Description: Demonstrates vapor-liquid equilibrium (VLE) for a binary system as the positive deviations from Raoult's law increases until phase separation occurs and two liquid phases are in equilibrium.

Description: Explains how chemical equilibrium calculations must take material balances into account when have one or more solid phases in equilibrium with one or more gases.

Description: Explains how to calculate bubble pressure, dew pressure, bubble temperature, and dew temperature for vapor-liquid equilibrium for a binary solution that is non-ideal.

Description: Explains how fugacity for a single component changes with temperature and pressure. Uses an interactive simulation to demonstrate the fugacity behavior.

Description: Use a mass balance to derive the lever rule, which determines the amounts of liquid and vapor in equilibrium, given the overall mole fraction and the mole fractions in each phase for a binary mixture.

Description: Uses molar quantity of solution and the Gibbs-Duhem equation to derive an equation for partial molar quantities in terms of a total derivative. Shows how to determine partial molar quantities from graph of molar quantity of mixture versus mole fraction of mixture.

Description: Presents the definition of partial molar quantities and describes how they could be measured.

Description: Describes phase behavior for a binary system in which two liquids are only partially miscible. The temperature-composition phase diagram is used to explain the phase behavior.

Description: Derives the Van't Hoff equation that shows how the equilibrium constant changes as temperature changes and simplifies for the case that the heat of reaction is constant.

Description: Explains why the equilibrium constant is dimensionless and why it is independent of pressure.

Description: A T-x-y diagram is used to explain phases present for vapor-liquid-liquid equilibrium for two immiscible liquids.

Description: Explains what an activity coefficient is for components in non-ideal liquid solutions.

Description: Explains chemical potential for a multi-component system and discusses movement between phases and chemical reactions.

Description: Explains why fugacity is important for mixtures and explains how it is used.

Description: Explains why fugacity is important for single components and tells how it is used.

   Click here to see a playlist of other interactive screencasts on YouTube.